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Abstract
Predictive policing is a research field whose principal aim is to develop machines for predicting crimes, 
drawing on machine learning algorithms and the growing availability of a diversity of data. This paper 
deals with the case of the algorithm of PredPol, the best-known startup in predictive policing. The 
mathematicians behind it took their inspiration from an algorithm created by a French seismologist, 
a professor in earth sciences at the University of Savoie. As the source code of the PredPol platform 
is kept inaccessible as a trade secret, the author contacted the seismologist directly in order to try 
to understand the predictions of the company’s algorithm. Using the same method of calculation on 
the same data, the seismologist arrived at a different, more cautious interpretation of the algorithm’s 
capacity to predict crime. How were these predictive analyses formed on the two sides of the Atlantic? 
How do predictive algorithms come to exist differently in these different contexts? How and why is 
it that predictive machines can foretell a crime that is yet to be committed in a California laboratory, 
and yet no longer work in another laboratory in Chambéry?  In answering these questions, I found 
that machine learning researchers have a moral vision of their own activity that can be understood by 
analyzing the values and material consequences involved in the evaluation tests that are used to create 
the predictions. 
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Article

Introduction 
Predictive policing is a field of research whose 
principal aim is to develop machines for predict-
ing crimes, drawing on machine learning algo-
rithms and the growing availability of a diversity 
of data (Perry, 2013). In the United States, predic-
tive policing is part of a longstanding project of 
policing reform by research (Walker, 2004) that 
seeks to create a pro-active police force which 
acts on its own initiative to prevent crime, rather 
than simply reacting in emergencies when called 

to do so by citizens. Since the 1970s, this reform 
project has in large part been driven by research-
ers critical of a situation where the police act 
mainly in contexts of crisis and drama, and are 
detached from concerns with preventing delin-
quency (Weisburd and Braga, 2006). In this con-
text, over the last four decades, a large proportion 
of policing research budgets has been devoted to 
experimentation on tactics that might allow the 
police to anticipate and precede the commission 
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of offenses, rather than simply reacting to them. In 
2012, when PredPol, Inc. put a predictive analysis 
platform on the market in the form of download-
able software, offering a dashboard that displays 
risks of crime in real time at a precision on the 
order of 200 meters (Figure 1), the dream of the 
American police reformers of the 1970s seemed to 
have been given concrete form as a machine. 

With the deployment of this type of analytical 
platform in public action, a new form of quantifica-
tion began to progressively spread through public 
administrations. Classical public statistics, based 
on the law of large numbers and the associated 
notions of norms and means, now had to compete 
with these algorithmic practices, whose main 
objective is prediction through the automated 
production of classes, clusters, or patterns. Statis-
tical learning was now liberated from the need for 
a fixed system of categories: “Rather than stable, 
permanent, structuring variables, which fixed 
statistical objects within categories, digital algo-
rithms prefer to capture events that they record 
on the fly in order to compare them to other 
events, without first categorizing them. Instead of 
weighty variables, they seek to measure signals, 
behaviors, actions, performances” (Cardon, 2016: 
49). In recent years, as these changes have upset 
traditional reference frameworks in standard 
statistics, many initiatives have been undertaken 
to make algorithms a specific research object in 
the social sciences (Dourish, 2016). In this litera-
ture, algorithms are seen as powerful mechanisms, 
with a growing role in all sectors of society and a 
subtle, discreet, and dissimulated power over indi-
viduals (Beer, 2009). Denouncing their intrusive, 
discriminatory, and underhanded nature (O’Neil, 
2016), researchers and activists have demanded 
a politics of algorithms (Crawford, 2016). Account-
ability (Diakopoulos, 2014), transparency (Zarsky, 
2016), and audit (Sandvig et al., 2014) have 
become watchwords in these public debates on 
the algorithm (Dourish, 2016).

The Foucauldian analyses of Rouvroy and Berns 
(2013) amplify what Ziewitz (2016) called an ‘algo-
rithmic drama’. Rouvroy and Berns (2013) criticize 
the profound transformations in the exercise of 
power enabled by machine learning. They argue 
that the normativity of the law, in its discursive 
and explicit form, allows individuals the choice 

to obey or disobey and offers them the right to a 
fair trial which extends the possibility of dialogue; 
whereas machine learning imposes a “tyranny of 
the real” that neutralizes critique by producing 
normative devices based on strict descriptions 
of individuals’ activity, or at least of their relations 
with their social and material environment. In 
other words, through the process of statistical 
learning, the “social norm emerges from the real 
itself”. This algorithmic governmentality is charac-
terized by its capacity to make all forms of resist-
ance schizophrenic: discrimination, exclusion, 
and the unethical distribution of visibility are not 
directly produced by the  classifications of the 
algorithms, but by the social reality on the basis 
of which the algorithms take form. Quantification 
is no longer the operation of institution of reality 
and transformation of the world that sociologists 
have sought to reveal, but instead an operation 
of conservation and reinforcement of that reality 
and of the flagrant injustices associated to it 
(Anderson, 1990; Desrosières, 2002; Hacking, 
1999; Porter, 1996).  In this context, actors’ critical 
sense focuses on this algorithmic reinforcement 
of existing realities: that is, on the feedback effects 
of the computation, and not on the forms of 
computation themselves, with respect to which, 
according to Rouvroy and Berns (2013), they lack 
all critical sense. 

If actors lack any critical sense in these algo-
rithmic contexts, neither the pragmatist sociology 
of social critique (Boltanski and Thévenot, 2006) 
nor a sociology of controversies (Latour, 1987) can 
be applied to machine learning algorithms. Does 
this mean the project of a sociological analysis of 
machine learning should be abandoned? Pointed 
as it is, Rouvroy’s and Berns’s analysis in terms of 
critical dispossession limits the concrete possibili-
ties for emancipation in relationship to algorithms 
of government, by confining actors, and sociolo-
gists themselves to a stance of powerlessness. 
If the sociology of science and technology is to 
contribute to the study of algorithmic predic-
tion, and at the same time to justify its relevance 
and usefulness in this context, it must develop 
a specific art of inquiry that allows it to create 
critical tests specially designed for the purpose. 
Here, I borrow this art of inquiry from Tim Ingold 
(2013). To understand algorithms and their predic-
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tions, we must enter into a process of correspond-
ence with them—touching them, manipulating 
them, and subjecting them to various operations. 

I undertook such an inquiry between June 
2013 and March 2017 in a study on the algorithm 
of PredPol, the best-known startup in predic-
tive policing. The team of California researchers  
behind it (Mohler et al., 2011) took their inspira-
tion from an algorithm created by a French seis-
mologist, David Marsan, a professor in earth 
sciences at the University of Savoie. As the 
source code of the PredPol platform is kept inac-
cessible as a trade secret, I contacted Marsan 
directly in order to try to understand the predic-
tions of the company’s algorithm . Marsan tested 
his algorithm on the same open-access crime 
data from the city of Chicago that the California 
researchers used in their own publication. Using 
the same method of calculation on the same data, 
he arrived at a different, more cautious interpreta-
tion of the algorithm’s capacity to predict crime . 
Unexpectedly, I created a situation of controversy 
concerning knowledge of the technical properties 
of the algorithm (Mackenzie, 2004). By confronting 
a physicist specialized in earth sciences with 
researchers in applied mathematics who are 
focused on developing predictive machines, I 
created an opportunity to take the beings who 
sustain the algorithm’s existence and make them 

visible, and to focus my full attention on the 
specific associations that PredPol’s algorithm is 
composed of (Latour and Venn, 2002). 

How were these predictive analyses formed 
on the two sides of the Atlantic? How do predic-
tive algorithms come to exist differently in these 
different contexts? How and why is it that predic-
tive machines can foretell a crime that is yet to be 
committed in a California laboratory, and yet no 
longer work in another laboratory in Chambéry? 
To answer these questions is to describe a contro-
versy that will allow us to explore the workings 
of the algorithm from the inside—to “unfold” it, 
in a Deleuzian term (Deleuze, 2006) that Latour 
(1987) adopted for use specifically with technolo-
gies6. This procedure of unfolding revealed that 
machine learning researchers have a moral vision 
of their own activity (Daston, 1995) that can be 
understood by analyzing the values and material 
consequences involved in the evaluation tests that 
are used to create the predictions. To analyze the 
moral dimensions of prediction is not to study this 
or that usage of machine learning, but to investi-
gate the transformations undergone by predictive 
categories as they move from one social context 
to another. By the end of this article, prediction 
should be clearly understandable as a moral 
problem that is indissociably at once cognitive 
and material. 

Figure 1. Screenshot of the map on the dashboard of the PredPol platform, indicating upcoming crimes at a 
precision of 200 metres. 
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An algorithm predicting 
earthquakes and crimes 
without a priori hypotheses
What makes this California startup a reference in 
the domain of predictive policing is its slogan, 
“More Than A Hotspot Tool.”  Since the early 1990s, 
the urban cartography of “hotspots”—heatmaps 
of the distribution of crime in the city—has been 
the main tool for strategic intervention in areas 
where crime is concentrated (Weisburd et al., 
2009). PredPol claims to do better than these clas-
sical crime maps thanks to a predictive method 
used in the field of earthquake prediction. A simi-
larity observed by these Los Angeles research-
ers between the dynamics of the propagation of 
crimes and that of earthquakes, they say, means 
that the geographical dynamics of criminality can 
finally be characterized mathematically (Mohler 
et al., 2011). PredPol uses a method of calculation 
taken from stochastic point processes, a branch of 
statistical physics. This is a classical approach to 
modelling the distribution of a set of events (con-
sidered as pointlike entities) in a finite space of 
arbitrary dimensionality (in the models discussed 
here, two spatial dimensions and one temporal 
dimension). Point processes are used to identify 
the formal mechanisms that produce these events 
in several dimensions, by modelling how they are 
distributed in time and space.

Producing spatiotemporal clusters by 
combining concentration and contagion
The question behind this statistical operation is 
whether the events are distributed randomly or 
in some more regular fashion, and in particular 
whether the points cluster around particular loca-
tions. The choice of the type of process depends 
on the researcher’s hypotheses regarding the form 
of mechanism involved. The PredPol researchers 
started with a classical hypothesis in predictive 
crime analysis: rather than occurring randomly, 
crimes are concentrated in space and spread 
through a local neighbourhood. The repetitive 
structure of the events themselves is enough to 
model them (without drawing on external varia-
bles). In other words, the best predictor of a future 
crime is a past crime.  I will return to this hypoth-
esis below, but note first of all that the PredPol 
researchers were interested in self-exciting point 

processes because they represent a way of mod-
eling interactions between events that takes the 
history of previous events into account: the occur-
rence of future events (crimes or earthquakes) 
depends on the history of the process. The for-
mula below is the mathematical representation 
of this process, the predictive algorithm used by 
Marsan (Marsan and Lengliné, 2008) and PredPol 
(Mohler et al., 2011). It calculates a probability that, 
in a manner of speaking, represents an idealiza-
tion of the mean number of crimes or earthquakes 
on a surface:

In this formula, the probability of the occurrence 
of an event, at a given moment in the process, 
contributes to an overall calculation of risk inten-
sity per unit surface and per unit time. In the lan-
guage of statisticians, it is said that this equation 
“describes an inhomogeneous Poisson process of 
intensity λ(x,y,t).” This intensity is a calculation of 
risk interpreted as a density that depends on both 
space and time. It is obtained by taking the sum 
of the two components of the formula: first, the 
function μ (x,y), known as the background rate, 
depends only on space, and represents a proba-
bilistic calculation of the spatial concentration of 
risk in general; second, the function g(x-xi,y-yi,t-
ti,Mi), known as the contagion kernel, models 
the spread of series of events whose occurrence 
depends on previous events and on the parame-
ter Mi (the magnitude of the event). The algorithm 
models risk intensity at each location in a map by 
adding together these two components. Note 
that the contagion model is linear: if this were not 
the case, computation (simulation, optimization) 
would be very difficult, and would make the algo-
rithm practically unusable. It is hypothesized, for 
example, that the contagion g(1,2) following two 
distinct events 1 and 2 is simply the sum of the 
individual contagion effects of g1 and g2 (hence 
the sum in the equation).

A model that adjusts its own form
Marsan uses this method to model how the main 
seismic events in an earthquake set off after-
shocks, which in turn set off their own sequences 

λ(x, y, t) =   𝜇𝜇 (𝑥𝑥, 𝑦𝑦) + ∑ 𝑔𝑔(𝑥𝑥 − 𝑥𝑥𝑥𝑥
𝑖𝑖,𝑡𝑡𝑖𝑖<𝑡𝑡

, 𝑦𝑦 − 𝑦𝑦𝑥𝑥, 𝑡𝑡 − 𝑡𝑡𝑥𝑥, 𝑀𝑀𝑥𝑥)
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of earthquakes.8 The Los Angeles criminologists’ 
interest in Marsan’s algorithm was spurred by 
what they saw as a similarity of form with criminol-
ogists’ characterization of crime dynamics: just as 
earthquakes are followed by aftershocks, so, they 
thought, crimes are followed by “aftercrimes.”  
Since the 1990s, a field of research on the repeti-
tion of crimes has developed in the United States 
and Great Britain, after a multitude of crimino-
logical analyses converged on the conclusion that 
most crimes repeatedly target a small number of 
victims, and propagate through their immediate 
spatial neighbourhood. In the model of ‘repeat 
and near-repeat crime concentration’ (Pease and 
Tseloni, 2014) that was proposed to account for 
this pattern, crime can be seen either as the sig-
nal of a relatively stable risk in a given area, or as 
an indication that incidents of victimization rein-
force the probability of the occurrence of later 
incidents: In other words, crimes are repeated in 
or near the same location, and spread by “conta-
gion.”9 These two hypotheses are present in the 
calculation of risk intensity presented above: the 
relatively stable risk in an area corresponds to the 
concentration , and local reinforcement to conta-
gion . 

With this algorithm, Marsan seeks to show 
that the structure of cascades of events can be 
modeled probabilistically, without any particular 
hypothesis about the underlying mechanisms, and 
without the need to test model parameters first. 
Herein lies the contribution of Marsan’s algorithm 
in seismology. While most existing seismological 
models are parametric (see below for an explana-
tion of this term), with the parameters set on the 
basis of empirical data, Marsan and his collabo-
rator made their mark in the field by showing 
that this parameterization can be dispensed with 
completely. The PredPol researchers made the 
same argument to justify the value of their own 
research: the first statistical approaches used in 
criminology, notably in the study of the spread 
of crimes, were parametric. This means that they 
required a hypothesis on how crimes propagate. 
But how exactly do parametric and non-para-
metric approaches differ?

In parametric models the form of the model 
is imposed and its parameters optimized. In 
nonparametric models, in contrast, an estimate 

is calculated of the optimal size of the diameter 
of the circular moving window (smoothing 
window) that records the number of points in 
each cell in a virtual grid projected on the map, 
and the number of parameters varies, increasing 
with the number of observations. To estimate 
the parameters (“nonparametric” does not mean 
free of parameters), Marsan uses the expectation-
maximization algorithm, a classical method that, 
in an iterative procedure, repeatedly alternates 
two steps (the calculation of expectation and the 
calculation of maximum likelihood), in order to 
arrive at the estimator of the model. Marsan refers 
to another better-known method, artificial neural 
networks,10 to explain how this non-parametric 
method follows in the spirit of machine learning 
(Domingos, 2017) :   

It’s a little like a neural network. We put in bricks 
that depend on parameters, but the final product 
is not, or is very little constrained at the outset. The 
model adjusts its own form. For us, it was above 
all a way to show that a model with the fewest 
possible assumptions could converge toward 
laws (forms) that are very close to the empirical 
laws conventionally injected at the beginning in 
stochastic approaches. The fundamental difference 
with neural network approaches is that they’re 
often used as a black box with a strictly predictive 
goal, whereas that’s not at all what we had in 
mind. Instead we’re trying to understand what a 
“good” contagion kernel is and how it can emerge 
naturally from the data analysis.  

According to Marsan, this opposition between 
understanding to construct theories and predict-
ing to act without necessarily having a complete 
understanding of the phenomenon—which is 
well known to machine learning specialists (Hof-
man et al., 2017; Shmueli, 2010)—explains the dif-
ference between his approach to modelling and 
that of the PredPol mathematicians. Here we will 
look at the practical consequences of this opposi-
tion for the way the algorithm is evaluated.

Revealing the sumptuous 
opacity of the algorithm
Through this simple surface description of the 
algorithm, we have surpassed the barrier of its 
mathematical formalism and glimpsed at the 
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hypotheses that its predictions depend on. Here 
I will move on to a sociology of the knowledge 
of the technical properties (Mackenzie, 2004) of 
PredPol’s algorithm. To do so, I will consider the 
algorithm as a being whose dominant mode of 
existence is technological (Latour, 2012; Simon-
don, 2016). As Latour (2010: 26) clearly showed, 
“The technological object is opaque, and—to put 
it bluntly—incomprehensible [...] in that it can 
only be understood provided that we add to it 
the invisibles that make it exist in the first place, 
and that then maintain, sustain, and sometimes 
neglect and abandon it.” From this perspective, 
it can be clearly seen that opacity, which is now 
a commonplace in public debate on algorithms, 
is not a problem specific to machine learning: all 
technological beings, generally speaking, “like 
to hide.” There is no use hoping that the PredPol 
algorithm will become transparent, that its devel-
opers will make it public in order to clarify and 
make it easier to master: like all technical beings, 
algorithms are fundamentally opaque. Neverthe-
less, an appropriate method of inquiry can allow 
us to get into the workings of the algorithm, 
revealing its “sumptuous opacity” (Latour, 2011: 
22).

Touching the algorithm
To unfold the PredPol algorithm, we must know 
how to use its language—not the specific lan-
guage of code, but the more general language 
of the technical: detours, zigzags of ingenuity, 
ruses (Latour, 2012). Faced with the opacity of the 
PredPol algorithm, we reacted in something like 
the way an archaeologist might when faced with 
an ancient object whose meaning escaped her: 
turning it around to view it from various angles, 
simulating it, and reproducing it. This stance is an 
unfamiliar one for the sociologist: handling the 
object of inquiry, squeezing it, fiddling around 
with it, hacking it. I thus asked David Marsan to 
do this on my behalf, and discussed it with him 
on several occasions. He tested the algorithm that 
I have just presented on open-access crime data 
from the city of Chicago—which, as noted above, 
is the same data that the PredPol researchers used 
in one of their own publications. I thus asked Mar-
san not only to explain to me how the algorithm 
works, but to run it on crime data and share the 

results with me. Unexpectedly, in so doing, I cre-
ated a situation of controversy around knowledge 
of the technical properties of the algorithm. Noth-
ing like a good controversy to get inside the work-
ings of a machine.

To describe this controversy, I will follow the 
three steps that structure the work of modelling 
itself: the justification of the choice of point 
process (here, self-exciting), and then the 
modelling strategy and the associated model esti-
mation techniques (the expectation–maximiza-
tion algorithm), and finally, the evaluation of the 
model. The first two steps depend on analysts’ 
beliefs about the nature of the problem, whereas 
the last depends on their moral vision of their 
own activity. In the experiment that I proposed to 
Marsan, the type of point process was imposed, 
and his modelling strategy did not significantly 
differ from that of the PredPol researchers. Marsan 
thus set out to evaluate a model applied to a 
phenomenon about which he knows nothing, 
using an algorithm similar to PredPol. Neverthe-
less, points of divergence appeared when it came 
time to interpret the results. Marsan expressed 
numerous doubts on the capacity of his algorithm 
to do better than classical maps of crime hotspots. 
In the note that he wrote on the analysis of the 
Chicago crime data, he concluded: 

The results obtained offer good reasons to 
doubt the capacity of the proposed models 
to do better than simple hotspot maps. The 
contribution of contagion (the triggering 
contribution) to explaining the occurrence 
of future events is small (it represents only 
1.7% in the best model). The role of “memory” 
in the process can thus make no more than 
very modest contribution to the efficiency 
of the prediction system. More importantly 
still, the assumption is that the dynamic of 
the process remains the same over time. The 
possible non-stationarity of the process is 
clearly a problem, because it limits the use 
of past information to predict the future. 
In 2015, burglaries were not distributed (in 
time and space) in the same way as in 2014. 
This non-stationarity is probably due to 
uncontrolled changes in how criminal acts 
are carried out. It could also be due to the 
deployment of new predictive algorithms: as 
police patrols use them, they might provoke 

Science & Technology Studies 32(4)



125

reactions among burglars. Contrary to natural 
processes such as earthquakes, analyses like 
the ones presented here could change the 
observed process, which makes correctly 
predicting future events more difficult 
(personal note from David Marsan, sent to 
George Mohler  in September 2015).12

To understand Marsan’s conclusion, recall that 
the algorithm calculates the intensity of risk in 
space and time by adding together two elements: 
concentration (space) and contagion (space- and 
time-dependence).David Marsan’s note indicates 
that contagion does make a contribution to the 
process, but it is extremely small—in fact, negli-
gible. And yet, this is the dimension emphasized 
by the promoters of PredPol in their slogan “More 
Than a Hotspot Tool.” Could it be that the PredPol 
scientists altered the results to make them more 
favorable to their commercial project? According 
to Marsan, the answer is no: the PredPol research-
ers did honest work. Moreover, Marsan wrote to 
George Mohler, who responded as follows: 

Thanks for your email and sending along the 
analysis. I have found your work on nonparametric 
point processes quite interesting and influential! 
We have certainly seen the branching ratio vary 
quite a lot from city to city and crime type to crime 
type (from 0 to .5).  As you point out, it is important 
to pick such parameters using cross validation in 
which case it is certainly possible that a simpler 
model may be favored.  It also may be the case 
that the nonparametric model you are using is 
over-parametrized (it looks like it has over 30 
parameters), so it may be over-fitting the training 
data.  You might need more regularization, or 
you might want to use a semi-parametric model 
(you mention using an exponential smoothing 
kernel, which is essentially a parametric Hawkes 
process without the background rate). Another 
thing you bring up is the non-stationarity of the 
process.  I think this is important and something 
we tried to estimate in the JASA paper (Mohler et 
al., 2011) (where the background rate \mu depends 
on time). Disentangling endogenous contagion 
from exogenous fluctuations in the intensity is a 
somewhat open problem, though I have done a 
little work in this area. The non-stationarity of the 
background rate is one big difference between 
crime and earthquakes, and you often try to 
factor in seasonality and other explicit exogenous 

predictors. (Email from George Mohler to David 
Marsan, 3 September 2015).

There is no reason to question the honesty of the 
scientists who worked to develop PredPol. In his 
response, Mohler shows he is conscious of the 
many limitations of the PredPol algorithm, and 
offers a defense against Marsan’s critique, recall-
ing that they sought to deal with the problem 
of non-stationarity by adding a time variable  to 
the background rate. The PredPol equation thus 
becomes. How did Marsan react to Mohler’s 
response? To answer this question we have to fol-
low in the steps of Marsan’s critical analysis:

The little work I did on this - well, it took two or 
three weeks of work, that’s not nothing - showed 
me that there was a problem in the data between 
2014 and 2015.  I took a look in a very simple way 
to see how they behaved, and in fact they aren’t 
similar at all. 

Marsan then invites us to look at the two figures 
below. On the left are earthquakes; on the right, 
crimes.  

These two graphs (Figure 2), which represent 
simple descriptive statistics on change over time 
in the mean distance between pairs of events 
separated by n-1 events, led Marsan to say that 
the data do not behave in at all the same way 
between 2014 and 2015. According to Marsan, the 
memory effect is very weak for crime. While the 
distance between pairs of events increases with 
the number of interposed events for earthquakes, 
for crimes it is not apparent that there is any 
such trend. The most surprising thing for Marsan 
was that for crime, the mean distance was quite 
different for different years. The phenomenon is 
not stationary. 

Accuracy vs. precision
How is it that these simple descriptive statistics 
were enough to convince Marsan that his algo-
rithm is not particularly applicable to the Chi-
cago data, but that they did not concern Mohler, 
who—as his response to Marsan shows—was not 
surprised by this difference between seismologi-
cal and criminological phenomena? Marsan sug-
gested a partial response in our interview: 
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Bilel, you have to understand. You’re a statistician, 
you don’t know much about the problem you’re 
being given, and they say to you, “We’ll pay you, 
we’ll give you the data, give us the best possible 
model.” You go to work and you realize that your 
model behaves well one year and then a year 
later it doesn’t.  You’re a stats guy, you don’t know 
much of anything about the problem. What 
do you do? He as a statistician says to himself, 
my model isn’t flexible enough, I’m going to 
make it a little more flexible, I’m going to add . 
Personally, I’d rather go and talk to the Chicago 
police to try to understand what happened, what 
changed. Why is it different in 2015 than it was 
in 2014? Is it a counting problem? Did the police 
officers change their habits? Basically you try and 
understand what made it change from year to the 
next. Maybe Mohler tries to understand, but his 
attitude suggests to me that that’s not what he 
does. He tries to improve the predictive power of 
his algorithm. But because that doesn’t work too 
well, he tries to make it a little more flexible so it 
works better. His model isn’t flexible enough, so he 
says “I’m going to take my µ(x,y) and make it a bit 
more flexible so it works better by adding temporal 
variation to the background rate”. 

Thanks to his intimate knowledge of the algo-
rithm, Marsan was able, in a manner of speaking 
to get inside his own algorithm, putting himself 
in Mohler’s skin. Before Marsan looked into the 
Chicago data, the PredPol algorithm remained 
invisible not because it was protected as a trade 
secret, but because everything that would make it 
possible to follow the algorithm’s course of action 
remained hidden. Marsan allowed us to bring out 

Figure 2. Graphs showing the evolution of the mean distance between pairs of events, from Marsan’s notes. These 
graphs illustrate the “memory effect” and the stationarity problem. The x-axis is exactly the same on both graphs. 

 

some of the invisibles (Latour, 2010) that the algo-
rithm depends on. In doing so, the seismologist 
revealed the ingenuity with which his research 
was diverted, transformed, and translated to 
become usable in a police officer’s smartphone. 
He discovered, with the same stupefaction as me, 
what had become of his algorithm in the hands of 
a team of audacious mathematicians. Neverthe-
less, Marsan was critical of the way in which the 
PredPol developers deployed his machine:  

It might be that that’s not the right approach. 
It might be that it’s even the contagion that’s 
different from one year to the next. You’d have to 
switch out the contagion kernels. But that’s the 
hardest part to adjust. It’s simpler to just add a time 
variable. What he does is really basic. In seismology, 
we do things that are much more complex to get 
the background rate to change over time, to take 
non-stationarity into account. The essential step 
after the PredPol article would be to understand 
the non-stationarity. But they’re driving blind. 
Personally I think you can’t analyze your data 
without asking questions about the reality they 
represent. If you like, the two of us aren’t driven by 
the same engine. What interests us in seismology 
isn’t doing prediction, it’s understanding the form 
of the kernel.  Contagion interests us because it 
gives us clues about the mechanisms that make 
it so that one earthquake sets off another. It 
interests us because it tells us something about the 
seismogenic process. We’re not going to impose an 
a priori form, because the form is what interests us. 
He’s not interested in the form of the contagion. 
He doesn’t want to understand how the contagion 
happens. He wants to make a prediction. It’s totally 
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different. In our field you can find the same kind 
of researcher. There are people who do prediction, 
but who don’t want to understand the process. And 
there are many of us who think this leads you into 
a dead end.

Here, Marsan is no longer discussing the effective-
ness of the machine in relationship to the crime 
data, he is offering a moral condemnation of the 
work of the PredPol developers. In his view, he 
as an earth sciences professor in France does not 
share the same values as the generalist mathema-
ticians in California. According to Marsan, pre-
diction poses a “basic” research problem, in that 
what is in question are the theoretical foundations 
of seismology in a context where, as theoretical 
knowledge currently stands, predicting earth-
quakes is impossible. He repeated the point sev-
eral times in our interviews: 

 
Short-term predictions (from a few hours to a 
few days) are rarely successful. Most times they’re 
cruelly disappointing. Our failures at prediction 
regularly raise the question of whether predicting 
earthquakes is fundamentally impossible.

Marsan thus sees basic research as a tactical 
retreat: the idea is not to claim to produce pure 
and autonomous research, sufficient unto itself, 
but to take a step to the side into more theoreti-
cal research in order to overcome the problem of 

Figure 3. An example of a curve of predictive efficiency used in the article of Mohler (2011), showing the quantity 
of successfully predicted crimes in relationship to the number of cells flagged. The graph demonstrates the 
predictive superiority of PredPol with respect to Promap, the pioneering predictive policing tool developed in 
England in the 1990s by the criminologist Ken Pease and his collaborators. 

 

earthquake prediction. The community of seis-
mologists to which Marsan belongs argues that 
a comprehensive approach to the phenomenon 
is needed. They oppose exclusively probabilistic 
and predictive analyses, which are defended by 
researchers who consider that theoretical research 
in seismology has reached its limits (cf. the debate 
in Nature [Main, 2017], and notably the opposing 
positions of Pascal Bernard and Didier Sornette, 
which Marsan highlighted in our interview).  Mar-
san analysed the crime data in the spirit of his 
work on earthquakes. On his view, a nonparamet-
ric model is appropriate if the patterns yielded 
by this statistical learning approach raise impor-
tant research questions. This principle implies 
an evaluation of the “accuracy” of the algorithm: 
what is evaluated is the capacity of the calcula-
tion to reveal a close link, or a certain degree of 
accuracy, in the match between the mathematical 
model and a coherent conception of the phenom-
enon under study. The PredPol researchers judge 
the algorithm according to different criteria: if it 
improves the “precision” of prediction scores, then 
the algorithm is satisfactory.13 Marsan and the 
PredPol developers do not subject the algorithm 
to the same tests. In California, the crucial test is 
performed through a type of lift curve, which is a 
tool for comparing the performance of different 
algorithms (Figure 3). It was in this spirit that the 
PredPol developers turned to point process statis-
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tics, testing the algorithm on a criterion of com-
petition with other algorithms on the prediction 
market. These California mathematicians aspire to 
other principles, basing their research practice on 
objectives of precision, efficiency, simplicity, and 
the ability to bring a predictive solution to mar-
ket—all values that may be totally detached from 
the accuracy and correctness of the results pro-
duced by the calculations (Daston, 1995). 

The robustness of a prediction 
is inversely proportional to 
its practical consequences
One invisible that would have been difficult to 
detect without the help of David Marsan is the 
fact that the PredPol developers added flexibility 
to the algorithm by integrating a time variable to 
the background rate, thereby resolving the thorny 
problem of non-stationarity in the simplest possi-
ble way. Through this unfolding of the algorithm, 
Marsan freed us from the widespread obsession 
with the question of predictive efficiency alone. 
Algorithms are technological beings that can offer 
the opportunity for a much richer debate. The sit-
uation of controversy that I created from scratch (a 
useful way of demonstrating the sumptuous opac-
ity of the algorithm) revealed two different moral 
visions of predictive activity: one focused on the 
correctness (or accuracy) of models, the other on 
the precision of risk scores. Now what is needed is 
to follow the lines of the network that is laid out 
on the basis of these two different ways of assign-
ing value to predictions. 

Conceptualizing the process underlying 
a phenomenon or capturing the largest 
possible proportion of events?
Recall this fundamental principle in the sociol-
ogy of the sciences: phenomena are defined by 
the response they give to the tests that scientists 
subject them to in their laboratories (Latour et al., 
1992). In the Chambéry earth sciences laboratory, 
what Marsan calls an “aftershock” acts as a specific 
being: 

When a seismologist is analysing aftershocks, he 
doesn’t content himself with counting them. First 
of all, periods of high activity are the ones when he 
has the best chance of catching a large earthquake 

in the net of his measurement networks. If there are 
enough recordings of good enough quality, he’ll 
be able to establish a tomography of the rupture 
of the fault. Even without major aftershocks, 
he’ll learn a lot from the small ones, particularly 
on the directions of tectonic constraints, which 
he can deduce from their mechanisms. The 
bulk of the analysis work consists in localizing 
earthquakes: based on the arrival times of the 
P waves and S waves from each earthquake at 
each seismometer in the network, you draw 
the cloud of aftershocks point by point. It looks 
heterogeneous, but it includes calm areas and 
swarms, whose distribution changes over time: the 
subterranean cloud moves progressively further 
away from the epicentral zone. The mechanical 
disturbances of the main fault decrease quickly 
with distance, so that aftershocks are mainly 
only observed in its neighborhood, at distances 
equivalent to the length of the fault itself. By 
studying the aftershocks you can draw a circle 
around the main area of movement and localize 
the fault that’s responsible, even if it doesn’t 
break all the way to the surface. Even better: 
the form of the cloud that they draw out in the 
opacity of the earth can sometimes be used to 
determine the orientation of the fault. In certain 
cases, an abnormal concentration of aftershocks 
reveals the beginnings of the destabilization of 
neighboring faults. In the early 1990s, it seemed 
like everything had been done or said with 
aftershocks. Post-earthquake field studies became 
a matter of routine, a well-oiled machine, with 
ever more effective standard analyses. However, 
while the images of aftershocks were becoming 
more precise, detailed interpretation seemed to 
be impossible, as it depended on uncontrollable 
parameters linked to resistance and to the—
unknowable—state of tension of peripheral faults.” 
((Bernard, 2003), reading suggested by Marsan.)

Seismologists see aftershocks as a chance to 
understand what happened, to “catch a large 
earthquake.” In Marsan’s more technical formu-
lation, aftershocks serve to “filter the signal.” In 
seismic catalogs, all seismic waves have been 
recorded jointly by the seismographs. This is 
why seismologists need to isolate independent 
earthquakes (for example, those linked to the 
secular movements of plate tectonics, also known 
as mainshocks from earthquakes that depend 
on one another (foreshocks, aftershocks, mul-
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tiplets). Marsan’s algorithm is one of a range of 
methods known as declustering methods, which 
were developed to try to capture independent 
earthquakes when analyzing catalog data, dis-
tinguishing them from all other seismic events, 
notably those that correspond to aftershocks. The 
main challenge is to enrich the catalog in order to 
model seismicity as a process, wherein the occur-
rence of one earthquake alters the surrounding 
tension field and the capacity of nearby faults to 
generate other earthquakes. To model seismicity 
as a continuum of earthquakes, Marsan must be 
able to isolate classes of earthquakes, in order to 
integrate the fact that the tensions released by 
small earthquakes may be as large as those result-
ing from larger earthquakes in the locations where 
the seismicity occurs. It is in this spirit of isolating 
classes of earthquakes that Marsan observes the 
contribution of “memory” to seismicity in an area. 
In a critical methodological article on decluster-
ing algorithms, Marsan and coauthors surveyed 
the advantages of statistical learning, which free 
seismologists from the need to define a priori 
the statistical characteristics of the classes of 
earthquakes that seismicity consists of. Marsan is 
interested in artificial learning because it allows 
him to challenge the system of categories that he 
uses to investigate seismicity. He approaches the 
existence of the three classes of earthquakes—
foreshocks, mainshocks, and aftershocks—with 
a certain methodological nominalism. For him, 
declustering must be used to test whether the 
conventional forms of earthquake classification 
are well founded. He closes the article with the 
following lines on this epistemic opening: 

Even though great progress has been made in the 
last decade, there are still many open questions, 
i.e., starting with the physical triggering of 
earthquakes (aftershocks), effects of uncertainties 
in the catalog on the results of declustering, or 
the effect of censored data (selection in time, 
space and magnitude range) on the outcome. In 
summary, care should be taken when interpreting 
results of declustering or results that depend on a 
declustered catalog, because these results cannot 
reflect the exact nature of foreshocks, mainshocks 
and aftershocks; indeed the exact nature of these 
events may not exist at all. (van Stiphout et al., 
2012)

What if foreshocks, mainshocks, and aftershocks 
did not exist before being modelled? Marsan 
takes such an “agnostic” approach to modelling. 
He proposes to suspend beliefs regarding earth-
quakes, abandoning the idea of a pre-data struc-
ture that can simply be observed in the catalogs. 
In other words, Marsan expects machine learning 
to be able to be placed underneath categorical 
forms of seismicity (Cardon, 2016). At no point did 
Marsan see the algorithm that he programmed 
as a method of predictive analytics, because pre-
dicting aftershocks is not an end in itself in his 
research.14 Aftershocks interest Marsan because 
they have the power to help him conceptualize 
the process of seismicity differently. 

In their applied mathematics laboratory in 
Los Angeles, the PredPol developers use after-
shocks in a different way. In their article they 
suggest that declustering methods can offer a 
means of enriching “crime catalogs,” but do not 
expand on the point. Using prediction as a declus-
tering method, as Marsan does for earthquakes, 
could contribute to research on the modelling 
of crime in general—a subject I have written 
about elsewhere, and will not pursue further here 
(Benbouzid, 2015)—which poses basic research 
problems no less complex than those of seis-
mology. But the PredPol researchers are interested 
only in the “aftershocks” for the possibility they 
offer of adding an additional process to hotspot 
maps to incorporate regularities (repetitions). 
They use “crime aftershocks” (near repeat crime 
or near repeat victimization) for their capacity to 
capture the largest possible proportion of events. 

The value of a prediction is inseparable 
from its practical consequences
Thus, on the spatiotemporal projection traversed 
by the algorithm, repetitions are what they do as 
a function of what scientists try to make them do. 
Between California and Chambéry, the status of 
repetition of crime changed, because they took 
up a place in two different institutional environ-
ments. In Chambéry, measured classes of enti-
ties exist in a domain where predictions lead 
to demonstrable consequences, which is not true 
in the case of policing. To illustrate this situation, 
in our interviews, Marsan often opened a histori-
cal parenthesis on the problem of demonstrable 
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consequences in earthquake prediction. He men-
tioned the example of Parkfield as a symptomatic 
case of this problem in seismology: 

Parkfield is a little village on the segment of 
the San Andreas Fault that seismologists have 
transformed into an observation site, which is now 
considered the most instrumented place on the 
planet. An earthquake was predicted there in 1988, 
but it happened in 2004, 16 years late. Failures of 
prediction of this kind are not rare in seismology. 
They pose particularly serious problems.

In the politics of earthquake prediction, scientists 
are held directly responsible for false positives and 
false negatives. The experience of false positives 
(earthquakes that do not happen) leaves inhab-
itants with a feeling of generalized anxiety and 
causes large economic losses. The experience of 
false negatives, as in L’Aquila, Italy in 2009, clearly 
explains seismologists’ reserved attitudes on their 
own capacity to provide robust predictions. Pre-
dicting an earthquake implies evacuating entire 
cities, which carries a considerable cost and can 
provoke dangerous panic reactions at the scale of 
the road network of an urban agglomeration. 

In crime prediction policies, the PredPol 
platform works as a tool for the management of 
police action. PredPol’s research has shown that 
by spending just 5% of their available time in the 
areas identified by the algorithm, police patrols 
are twice as effective (in terms of crime reduction) 
as when they patrol the hotspots classically identi-
fied by analysts. The accuracy of PredPol’s claims 
is not very important. What counts is to be able 
to optimize, and above all to precisely control, this 
tactical allocation of police time to presence in 
high-risk space. By integrating data from the GPS 
tracking systems installed in police vehicles, the 
algorithm optimizes the dosage of the presence 
of police patrols in different sectors of the city: 
the predictive square remains red on the map as 
long as the police have not patrolled there, turns 
blue during their first movements through the 
area, and then green when the officer has spent 
the optimal period of time as calculated according 
to available resources (for example, 5% of a police 
officer’s working day). For a sector manager, 
PredPol appears to be a good tool to ensure that 
police officers play their preventive role, often 

simply by way of their dissuasive presence, distrib-
uted randomly, but for an optimized duration, in 
the areas where risk is estimated to be greatest. 
The task of prediction is the management of the 
public supply of day-to-day police presence, while 
minimizing the need for change in police organi-
zation. While earthquake prediction has profound 
effects on the material and social structures of a 
city, crime prediction, as PredPol sees it, involves 
a minimal transformation in how policing is 
organized. David Marsan’s meticulous, reserved, 
and prudent attitude can be understood as a 
habit developed in a field where researchers are 
held responsible for predictions that may have 
serious consequences. In contrast, the runaway 
success of PredPol can be attributed to the limited 
practical consequences of its predictions—hence 
the relatively casual manner in which the Cali-
fornia researchers claim to predict crimes.  This 
observation fits well with what sociologists have 
shown in  studies of “theories, machines, and tech-
nology”: that “their robustness, their solidity, their 
truth, their efficiency, and their usefulness depend 
less on formal rules or on their own characteris-
tics than on their local and historical context—this 
independently of the various ways that there are 
of defining that context (Teil and Latour, 2017: 4). 
The robustness of earthquake or crime prediction 
is not the result of a rational calculation, validated 
by neutral researchers and integrated into a 
machine. It is a solidity composed of the actions 
targeted by the prediction and the network of the 
material elements that they imply. The moral of 
this controversy is that the robustness of a predic-
tion is inversely proportional to its practical conse-
quences. 

The divinatory aspect of 
machines (conclusion)
To go further in this examination of relations 
between predictions and their consequences, 
a good source of inspiration is an article by the 
anthropologist Joel Robbins (2010) on deonto-
logical and consequentialist styles of reasoning. 
Robbins (2010: 124) refers to this style of reason-
ing, based on “appropriate rules and not on the 
consequences of one’s rule-governed actions,” 
as deontological. He contrasts this approach to 
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morality with consequentialism, where “actions 
are judged by their results, not by how closely 
they conform to a given rule.”  Robbins (2010) 
then deepens this analysis of deontological rea-
soning, drawing on an article by Jane I. Guyer 
(2007), “Prophecy and the Near Future,” on what 
she calls “the evaporation of the near future in 
theory and public representations” (Guyer, 2007: 
410). Guyer shows how, in both contemporary 
economic policies and Evangelical discourse, the 
dual focus on the immediate present and the very 
long-term has taken the near future out of play 
as a temporal frame. Robbins (2010: 125) adds to 
Guyer’s analysis that “[w]hat is lost in this move is 
the provision of a temporal space for [...] conse-
quentialist reasoning,” in favour of “deontological 
forms that do not need to refer to the near future 
world of demonstrable consequences to reckon 
the value of actions.” According to Robbins, the 
success of evangelicalism can be attributed to the 
way in which the contemporary period creates 
uncertainty about the near future, which can no 
longer be predicted at all, leading individuals to 
concentrate on the present of their actions and 
to project themselves into a distant and mystical 
future. Here, respect for principles wins out over 
the anticipation of effects:

Different styles of moral reasoning are embedded 
in different kinds of social circumstances, and [...] 
forms of moral reasoning only flourish in those 
social circumstances that are well suited to them. 
Consequentialist moral reasoning, for example, 
only works where people have a sense that the 
social world they inhabit is relatively predictable, 
such that the probable consequences of an action 
appear relatively easy to gauge with certainty. 
Where such conditions do not hold, deontological 
approaches make much more sense—even 
in situations in which one cannot control the 
consequences of one’s actions, one can control 
whether or not they conform to a rule or set of 
rules (Robbins, 2010: 124).

This distinction is of interest here, as it analyzes 
two different moral approaches in relationship 
to forms of prediction, in direct parallel to the dif-
ferences between the approaches of Marsan and 
PredPol. The social circumstance of the unpredict-
ability of earthquakes might seemingly favour 
deontological approaches, but in reality Marsan’s 

stance is consequentialist: Marsan pursues his 
research in the aim of making earthquakes more 
predictable, and thus to confer intelligibility on 
public announcements of the probabilistic theo-
retical construction of a phenomenon. PredPol 
gives the police the feeling of working in a more 
predictable world, but situations where police 
officers can directly observe criminals in the act 
are rare, even during discreet undercover patrols 
in the areas indicated with a precision of 200m x 
200m. How, then, can PredPol claim to “predict” 
crime? A remark made by Sean Malinowski, the 
first Los Angeles Police Captain to experiment 
with the PredPol platform, offers a glimpse into 
what “prediction” means for the police: “If hon-
estly done, there are no bad predictions in crime 
control.”15 Contrary to the seismologist, police 
officers cannot experience “failed” predictions, 
because in their practice, prediction is expressed 
not in terms of truth or falsehood, but in terms of 
“good” and “bad.” The problem is not to believe 
or disbelieve in the machine’s predictions, but to 
do something rather than nothing, following the 
machine’s recommendations.16 

It could be argued in response that the PredPol 
researchers adopted a consequentialist ethic, as 
they implemented a system evaluating the effec-
tiveness of the algorithm’s recommendations 
(Mohler et al., 2015) but the extent to which police 
can disrupt dynamically changing crime hotspots 
is unknown. Police must be able to anticipate the 
future location of dynamic hotspots to disrupt 
them. Here we report results of two randomized 
controlled trials of near real-time epidemic-type 
aftershock sequence (ETAS). But this evaluation 
bears only on very short-term consequences, 
and does not test the statistical significance of 
the measured decreases with respect to the 
general trends in crime over the long term.17 It 
is difficult, or even impossible, for the police to 
assess the practical effects of their daily activi-
ties on long-term trends in crime. The PredPol 
software allows them to optimize their attempts 
to control an overwhelming social phenomenon 
(Manning, 2008). It is simpler for the police to rely 
on the dosages recommended by the machine: 
through the statistical learning procedure, crime 
takes form in a machine that produces rules to 
be followed by the police. PredPol remains a self-
enclosed automaton, and like all automatons, it 
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can provide only summary results (an analytical 
dashboard indicates upcoming risks by simply 
adding an additional process to hotspot maps to 
incorporate regularities (repetitions)). The seis-
mologist, in contrast, makes use of the inductive 
logic of machine learning to take on a role as 
the continuous “regulator” and “organizer” of the 
predictive mechanism. In Marsan’s hands, the 
algorithm became an open machine (Simondon, 
2012), whose functioning can be deliberately 
modified, and which is used to understand.

To summarize, what distinguishes Marsan’s 
approach from that of the PredPol developers 
is that the seismologist conceives prediction in 
terms of its practical consequences, and the devel-
opers conceive it in terms of an absolute duty to 
act. Predictive policing is deontological insofar as 
the principal question that it asks of the algorithm 
is “What must I do?” and not “What is the best 
possible world with respect to the consequences 
of my actions?” (Ogien and Tappolet, 2009). These 
two moral approaches to prediction are applied 
in two different practical temporal spaces. Marsan 

conceives of prediction on the scale of the near 
future, the time needed to provide supplies to 
an area or to evacuate a city, a time frame that 
requires him to conceive the moral dimension of 
his research activity in terms of foreseeable conse-
quences. His ethic of responsibility pushes him to 
say that “We’re incapable of prediction.” PredPol’s 
predictions are focused on the immediate 
present—real-time analysis—and not on the 
long-term consequences of the actions that are 
organized by those predictions. The attitudes of 
the Evangelicals18 in Robbins’s study and the inte-
gration of predictive machines into police orga-
nization may, in this way, be more similar than it 
seems. The former locate the future in the hands 
of God, the latter in the hands of a machine that 
police leaders hope will lead to salvation. When 
they work according to this deontological style 
of moral reasoning, predictive artificial learning 
machines are made not only of technology, 
science, and organization, but also of an element 
of divination. 
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Notes
1 This research was supported by a grant of the French Agence Nationale de la Recherche to 

the project “Innovation in Expertise. Modeling and simulation as tools of governance” (ANR-
13-SOIN-0005), coordinated by David Demortain.

2 PredPol is a small Santa Cruz start-up developed along the same path as many other California busi-
nesses. In 2010, two entrepreneurs — Caleb Baskin and Ryan Coonerty (also Third District Supervisor 
for Santa Cruz County) — approached two California researchers, George Mohler (associate professor 
of applied mathematics) and Jeffrey Brantingham (an archaeologist specializing in the Upper Paleo-
lithic in northern China, and the son of two well-known criminologists who did pioneering work on the 
geography of crime), with a view to converting the fruits of their research into a profitable business with 
a strong growth potential. Although the research that underpinned PredPol was publicly funded, the 
start-up was created with 1.3 million dollars invested in 2012 by a handful of business angels. Following 
a business process that proved itself in spectacular fashion within two years, owing in particular to the 
efforts of its lobbyists operating in the Democratic networks of California, the firm was launched in a 
second round of venture capital fundraising (2.4 million dollars raised in 2014) in order to extend its 
commercial activity. At the time of writing PredPol is a commercial web-based system deployed in a 
number of policing departments in the United States and the UK.

3 David Marsan’s professional web page: https://www.isterre.fr/annuaire/pages-web-du-personnel/
david-marsan/?id_auteur=131 

4 I exchanged with David Marsan several times between February 2015 and March 2017. The quotations 
are drawn from my fourth interview with him in Chambéry in April 2016. 

5 I made Marsan’s analysis public in an article published on the web site of the magazine Vie des idées 
(Benbouzid, 2016), as subsequently reported by Mediapart (Hourdeaux, 2016). 

6 Echoing Deleuze, Latour encourages us to unfold the technical action: “I would like to define the regime 
proper to technology by the notion of fold, without giving it all the Leibnizian connotations that Gilles 
Deleuze (1993) has elaborated so well. What is folded in technical action? Time, space and the type 
of actants” (Latour, 2002: 248). In a methodological point of view, it means observing and following 
empirically what the PredPol’s algorithm is concretely made of, in order to make its components visible.

7 PredPol’s launch strategy was largely based on this slogan. On the basis of this marketing slogan, the 
public relations arm of PredPol sought to win over police leaders by convincing them that the PredPol 
system represents an improvement on “hotspot policing,” one of the ways that proactive policing has 
been labeled since the 1990s. On their website (www.predpol.com), trials of the program are system-
atically associated to a decrease in crime of around 20%, a larger decrease than in sectors where the 
program is not used.

8 Marsan and his collaborator Lengliné published a widely noted article in statistical seismology 
in Science in 2008 (Marsan and Lengliné, 2008). This is the article that the PredPol mathematicians 
cite in their own article (WHO?, 2011). The statistical method that Marsan developed was integrally 

Benbouzid
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transposed, aside from the elements of translation that were essential to adapt the algorithm to the 
constraint of operationalization.

9 To represent the spread of victimization in statistical terms and to identify the more or less repeti-
tive spatio-temporal configurations on which prevention strategies could be built, researchers apply 
spatial analysis statistical tools from epidemiological research. The analogy of contagion comes in 
1990s with the notion of “communication of the risk of victimization”.  For example, the mechanism of 
contagion corresponded fairly well to the results of qualitative surveys run on burglars. Burglars had 
told researchers that they regularly returned to burgle the same house when it was easy to burgle and 
they had not been able to take everything the first time around. Burglars moreover operate by neigh-
bourhood. The notion of “infectious burglaries” has been used to explain why victimization spreads in 
time and space. (Pease and Tseloni, 2014)

10 For a history of the controversial origins of neural networks, see Olazaran (1996). I analyze the contro-
versy within Artificial Intelligence (AI).

11 The opacity of algorithms has become a commonplace observation: not only is the source code of 
machines usually protected as a trade secret, but it also describes a process of artificial learning that 
is so complex and that involves so many variables that the results are difficult to interpret even for 
the specialists themselves. Whether intentional or not, opacity is understood as a central problem 
in current public debate in all countries where the problem of algorithms has reached the political 
agenda (Mittelstadt et al., 2016).

12 Marsan’s complete critical note can be consulted through the article published on online news web 
site Mediapart, “Police prédictive: deux chercheurs démontent l’algorithme” [Predictive policing: two 
researchers take apart the algorithm], 13 September 2016.

13 As Daston emphasizes, whereas “accuracy concerns the fit of numbers or geometrical magnitudes to 
some part of the world and presupposes that a mathematical model can be anchored in measurement 
[...] precision concerns the clarity, distinctness, and intelligibility of concepts, and, by itself, stipulates 
nothing about whether and how those concepts match the world.” (Daston, 1995: 8). 

14 Although these aftershocks threaten the safety of rescue workers searching through ruins for survivors, 
Marsan’s research does not aim to improve the prediction of their occurrence. 

15 Interview with Sean Malinowski, August 2013.

16 The scientists at the startup undertook a serious evaluation of efficacy of the algorithm’s algorithms, 
in the tradition of quasi-experimental methods (Mohler et al., 2015)but the extent to which police can 
disrupt dynamically changing crime hotspots is unknown. Police must be able to anticipate the future 
location of dynamic hotspots to disrupt them. Here we report results of two randomized controlled 
trials of near real-time epidemic-type aftershock sequence (ETAS), which may seem to suggest that 
PredPol’s approach is not deontological. Measuring efficacy is indeed a way of judging police actions 
in terms of results. However, the experimentation test of PredPol was punctual: The cities that use the 
platform do not systematically carry out a randomized trial experiment.  The assessement appears in 
the continuity of PredPol’s marketing plan, rather than in a logic of “regulatory objectivity” (Cambrosio 
et al., 2006) as in seismology with the  program “Collaboratory for the Study of Earthquake Predict-
ability”. http://www.cseptesting.org/. 

17 The assessment implemented by PredPol appears more in the continuity of the start-up’s marketing 
plan than in a logic of “regulatory objectivity” (Cambrosio et al., 2006) as in seismology with the “Collab-
oratory for the Study of Earthquake Predictability (CSPEP)” programme. http://www.cseptesting.org/, 
accessed 25.10.2017.

18 Robbin’s analysis sheds light on the profession of “technological evangelist” (or Chief Evangelist Officer), 
which emerged in the world of information technology.
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