
21

Programming Visuals, Visualising Programs
Phillip Brooker

University of Liverpool, UK / p.d.brooker@liverpool.ac.uk

Wes Sharrock
University of Manchester, UK

Christian Greiffenhagen
The Chinese University of Hong Kong, Hong Kong

Abstract
This article examines the role of visualisations in astrophysics programming work, showing that
visualisations are not only outputs for those producing them, but can help those developing them
understand how to do their work. Studies of visualization in programming have mainly been of
social and cultural factors influencing scientific research. We concentrate on the material aspects
of scientific work, as of interest in their own right and on methodological grounds (since capturing
the material practices of computer screen-work is an underexplored area). Using a ‘video-aided
ethnographic’ method we analyse an episode of computational astrophysics involving the use of the
Python programming language. We identify a selection of activities comprising the screen work of
an astrophysics researcher to unpack how those activities contribute to the production of scientific
knowledge.

Keywords: Astrophysics, programming, visualisations, video-aided ethnography

Science & Technology Studies 32(1)Article

Programming visuals,
visualising programs
The spread of computing throughout social life
has impacted the natural sciences such that the
use of computers to simulate phenomena or
automate the gathering and analysis of data has
become an alternative to physical data collection
and experiments (for studies of computational
programming work see Button and Sharrock,
1994, 1995, 1996; Knuuttila, 2006; Knuuttila et
al., 2006; Knuuttila and Boon, 2011; Martin and
Rooksby, 2006; Merz, 2006; Rooksby et al., 2006).
Using video-recordings of a researcher testing
out a program to convert electronic input relayed

from an orbital telescope into a set of images ena-
bling the identification of gravitational lenses,
we explore an assortment of problems that the
researcher meets in trying to ensure that his pro-
gram is dependably categorising these galactic
images.

Our attention to the visual features of compu-
tation reflects a growing interest in how scientists
engage with visualisations (Amann and Knorr
Cetina, 1990; Burri and Dumit, 2008; Carusi et al.,
2010; Lynch, 2011; Messeri, 2017). Our work is
aligned with studies exploring the material work
of dealing with digital images and visual data in

22

Science & Technology Studies 32(1)

scientific research (Alač, 2011; Carusi, 2008, 2011;
Coopmans, 2006, 2011; Daipha, 2010; Hoeppe,
2012, 2014; Sormani, 2014; Spencer, 2012; Vertesi,
2012).1 We focus on the practices involved in
visualisation-based and visually-oriented research
work, and how those practices intertwine with the
wider scientific knowledge and context of that
work. Alač notes of this:

The materiality of the scientific data – their digital
character – allows the practitioners to understand
what they are working with as something that is
mathematical, while it, at the same time, moves
and needs to be rotated, squished and squashed.
(Alač, 2011: 145)

Images and visualisations are used by the practi-
tioners that generate them as part of their routine
work, in such a way that “scientific visuals do not
represent knowledge and problem solving, but
are a part of such processes” (Alač, 2011: 162). Our
approach to visual-work is grounded in Coulter
and Parsons’ (1990: 255) claim that “‘seeing’ is akin
to an achievement and is not any sort of activity,
process, or undertaking”. Therefore we attend to
the various activities that generate and construe
an adequate ‘seeing’ of an astronomical phenom-
enon – the ‘searching for’, the ‘inspecting’, the
‘observing’, etc – on the part of one astrophysics
researcher, to show more clearly what constitutes
an achievement of this kind.

We begin by exploring two relevant literary
bodies around the roles of computing in scien-
tific research work and the underdevelopment of
social research attending to its material practices,
outlining a series of methodological concerns
around capturing and analysing ‘independently-
executed’ computer screen work. After depicting
the context of the activities that form our topic,
we analyse our data along six themes capturing
a variety of material practices involved in the
visual-work of scientific research. These themes
are: making code visual; highlighting for visibility;
finding through searching; finding visual utility
in images; arranging for comparison, and, finally,
visual diagnostics.

Background: Science
and programming
As computer tools have become increasingly
prominent in routine scientific work, so they have
become increasingly pertinent to social studies
of science, which focus on the constructing and
constraining functions of interaction in an era of
computational and digital science. There are two
related issues in this body of work: firstly, distinc-
tions between ‘science’ and ‘computing’ work,
and secondly, the neglect of the material work of
using computers to do science (relative to a focus
on communal and collaborative elements).

Several studies (e.g. Agar, 2006; Bijker et al,
2016; Bruun and Sierla, 2008; Götschel, 2011; Hine,
2006; Larivière et al, 2016; Louvel, 2012; Pettersson,
2011; Mulinari et al., 2015; Rall, 2006; Sundberg,
2010; Voskuhl, 2004) present computer-aided
scientific projects as comprising distinct exper-
tises: the practical hands-on skills of program-
mers and the conceptual/theoretical knowledge
of the scientist, combined through collaboration.
Taking a selection of such studies as exemplars,
this theme is apparent in Agar’s claim that histori-
cally, “one difference that [the introduction of]
computers made to science was deepening the
division of labour – and expanding one side of the
division, professional computing services” (Agar,
2006: 900). Similarly, Hine argues that:

This division of labour [between science/
knowledge and computing/programming] is
conventional in [the] development of information
systems. The database developer is responsible for
identifying ‘user requirements’, and is expected to
get to know users and find out what their needs
are. (Hine, 2006: 281).

On the ‘shop floor’, scientific projects and the
problem-solving work they involve are depicted
as presenting the cultural challenge of combining
skills and expertise by managing group work to
integrate members’ different capabilities. This is
exemplified by the following quotations:

23

Brooker et al.

This particular problem had nothing to do with
acoustics or digital-signal processing. Rather, it
was a problem that required those mystical skills
which enable ‘computer wizards’ to rescue and
manipulate their machines from the most hopeless
situations...My informants would refer to those
who were capable of successfully manipulating
computers as being ‘wizards’ who always knew a
‘trick’, an obscure command, or another solution to
a problem. (Voskuhl, 2004: 405)

Feynman2 is everywhere in this story...Against
the odds, as the problems increased in size and
complexity, his team continued to improve [in their
ability to provide the calculative power necessary
for the project]. (Rall, 2006: 955)

What these two accounts (and those of Agar, 2006;
Bruun and Sierla, 2008; and Hine, 2006) convey is a
sense of scientific knowledge as achieved through
integrating disparate skills and understandings
into a socially-constructed unified (though dis-
tributed) solution. However, where Voskuhl (2004)
refers to the mystical skills of ‘computer wizards’
as tricks of programming, our interest falls upon
what such ‘tricks’ practically consist of, and how
they might constitute the practical work of doing
acoustics and/or digital-signal processing with
computers. Similarly, if Feynman is everywhere
in Rall’s (2006) story it is because Rall is narrat-
ing Feynman’s endeavours as a team manager,
whereas we would be interested in the story Rall
doesn’t tell of Feynman’s role as a physicist.3

Some researchers seeking to investigate
the organisation of scientific knowledge as a
topic completely separable from the content of
scientific knowledge; e.g. in Sundberg’s (2010:
39) analysis of ‘simulation code collectives’ –
groups whose collective and cultural properties
implicate “the definition and control of simula-
tion code use and development”, whilst others
extend STS’ remit to include a singular concern
with the cultural aspects of research. Pettersson
(2011: 47) for instance aims explicitly “to analyse
experimental practices among plasma physicists
as gender creating processes with perspectives
from masculinity studies”, Götschel (2011) studies
how physics has been used to reinforce misogyny,
Louvel (2012) investigates the industrialisation
of doctoral scientific work as representative of

a grand shift in what constitutes scientific work,
and Mulinari et al. (2015: 55) critique the “uneven,
partial and sometimes even contradictory” neolib-
eral social and political factors surrounding stem
cell research.

We do not dispute the findings of these
studies – rather, we suggest that their accounts
of ‘knowledge production’ in scientific research
are partial, inasmuch as they do not capture
the practical activities through which scien-
tists produce knowledge in their labs (or at their
computers). Thus the aforementioned researchers
preclude a demonstration of the ways in which
the social and cultural factors that form their
topic enter into the day-to-day doings of scien-
tific research as knowledge production. Their
focus comes at the expense of acknowledging
the material practices of doing scientific work, and
how those practices execute scientific tasks – for
example, the hands-on nature of experimenta-
tion in neurobiology (Lynch, 1985), or the aspects
of embodiment involved in understanding how a
Mars Rover moves and sees (Vertesi, 2012, 2015),
or in the case of the present paper, leveraging
computer programming skills to explore gravita-
tional lensing as an astrophysical phenomenon.
We aim to reinforce a focus on the ‘content’ of
scientific knowledge (and the scientific business
of making analysable records of it), by shifting
focus from surrounding social and cultural factors
and towards the practical activities comprising the
execution of the work. Though we acknowledge
the wider social context in which one astrophysics
researcher’s work is embedded (and account for
this in detail below), the purpose of this paper
is to concentrate more intently on the ‘indepen-
dently executed’ aspects of scientific work as the
underexplored counterpart to the great wealth of
studies which focus more on the directly collabo-
rative and/or interactional activities of scientists.

Methods
Our choice to focus on the material aspects of
scientific programming is partly methodological
– as a hitherto underdeveloped site of research,
it is worth exploring what sorts of activity scien-
tific programming might comprise even if only to
elucidate on how such things might be captured

24

Science & Technology Studies 32(1)

for future social research. The neglect of the mate-
rial practices of computational scientific work has
been attributed by Bruun and Sierla (2008) to the
difficulties in locating and capturing such activi-
ties. As they note:

Recordings of real-time actions and interactions of
the project members would have contributed to
an in-depth understanding of the circumstances
through which knowledge networking
solutions were produced. This could have been
accomplished through video-recording, but many
of the interactions, decisions and deliberations
in research projects were difficult to capture in
real time, even with a video camera, because they
were not fixed in time and space…What is more,
in software development much of the crucial
interaction occurs when engineers browse, study,
modify and integrate artefacts that have been
developed by colleagues. These activities dominate
the experience of most software engineers and
constrain many of their decisions, but there is little
overt, bodily behaviour to be observed: only mouse
and keyboard use. (Bruun and Sierla, 2008: 140)

Bruun and Sierla (2008) have two complaints:
firstly, that people won’t stand still long enough
for their interactions to be videoed, and sec-
ondly, that what does take place in a static setting
– mouse and keyboard use – is not of any inter-
est. However, they thereby overlook the sense in
which the operational work of mouse and key-
board usage is embedded within scientific knowl-
edge. It is precisely this arena involving little overt
bodily behaviour in which much of the work of
programming-for-a-scientific-project takes place,
and it is the goings on within this arena that forms
the focus of the research presented here.

It is not our claim that screen-work – work
performed and achieved using the visual
resources available within a computer screen –
is an asocial endeavor. Indeed, screen-work is
sometimes a thoroughly collaborative affair, as in
the case of traders in the foreign exchange market
dependent on information appearing on-screen
in Knorr Cetina’s (2003) examination of the role of
‘scopic media’ in their work, or in Vertesi’s (2012,
2015) work on the role of images and image
construction across the different disciplinary
teams collaborating on the Mars Exploration

Rover project. However, in the cases analysed here,
screen-work is done without much (if any) face-
to-face or even remote (i.e. online) collaboration.
That much scientific activity is collaborative does
not exclude the fact that it can also be performed
via solitary effort. We agree with Carusi’s (2011:
332) claim that there is more to visualisation
work than face-to-face interaction, and that “the
sociality of visual practices – the fact of their
being shared by communities – is not sufficient to
account for what is seen through those practices”.4
This is evidenced in Vertesi’s (2015) work which
attends to the ways in which images pertinent to
the Mars Exploration Rover project move between
two types of setting: the collaborative team-based
planning meetings and conference calls, and
the desks and screens of individuals scientists.
Vertesi’s ethnography demonstrates that though
the work of image construction is inevitably
achieved through individual effort – mouse and
keyboard usage (cf. Bruun and Sierla, 2008) – their
efforts are designed and conducted precisely so
that they feed into, and even display, the broader
social and cultural context work of the Mars Explo-
ration Rover project. Failing to acknowledge the
movement of images between the two settings
would entirely misrepresent what it is those indi-
viduals are doing, and their reasons for doing
those things in the way they do. Just so with the
astrophysics researcher whose work forms our
subject – we explore the specific ways in which
this occurs for our case-at-hand below.

For present purposes however, it is worth
noting in a general sense that the social elements
of the tasks of screen-work, at least for the astro-
physics researcher whose work forms our subject,
are visible in the work only in an asynchronous
fashion. This is something captured by Button and
Sharrock (1996) who characterise the annotating
work of programmers, as holding a utility not for
their current task but for future users and devel-
opers of their program. In an even more funda-
mental sense, the work of programming rests on
the performance of other forms of interactivity
which consist of irrevocably social elements –
no more can there be a private programming
language than there can be a private linguistic
one (cf. Wittgenstein, 1974)! Yet there remains a

25

Brooker et al.

degree to which certain episodes of project work
are isolated from the communal scientific action
that typically forms the subjects of sociological
interest, as Vertesi (2012) notices of the embodied
scientific work of remotely controlling the Mars
Rover:

During my fieldwork, I certainly witnessed
situations in which such semiotic acts [embodied
movements representing the physical hardware of
the Mars Rover] were communicative in nature, in
which a wheelie chair maneuver or a skilled twist
of the elbow was a central articulation in the work
of coordinating action at a distance. However, the
vast majority of times I witnessed these gestures,
there was no one else in the room. Most frequently,
scientists, engineers, and technicians alike gestured
in what were clearly formal, codified, standardized
ways of enacting the Rover, but they did so entirely
alone, speaking to mutually invisible interlocutors
on a telecon line. (Vertesi, 2012: 402)

Similarly, the astrophysics researcher’s work
depicted in this paper may be understood as inde-
pendently executed – work achieved in large part
without guidance or consultation, though none-
theless embedded in a collaborative structure
reliant on remote and asynchronous connection
through infrastructure rather than face-to-face
interactions.

In saying that the work is ‘independently
executed’ we have the following in mind: (1) in
relation to the gradual acquisition of professional
competence, postgraduate researchers (such as
HR, whose work we report) can be making the
transition toward being able to work indepen-
dently of close supervision and evaluation in
carrying out a research task on their own behalf,
(2) in relation to the task, whose execution does
not depend on interaction with and contributions
from others but can be carried out in (relative)
solitude and (3) in relation to the division of labour
within the project where the task at hand is self-
contained and does not require connections to
the several other comparable graduate projects
that are contributing to the wider goals of the
research group.

Video-aided ethnography
Methodologically, this presents a problem for a
social study of science – what is to be found in a
setting where nothing explicitly social seems to
have happened? And what might constitute an
appropriate method of capturing whatever work
might be involved? We have used an analytic ori-
entation that captures key features of the settings
as they appear to those involved (i.e. astrophysics
programmers). Our understandings of the setting
rely on knowledge gained through fieldwork5 as
well as repeated viewings of the video. Drawing
on ethnomethodology (Garfinkel, 1967) and asso-
ciated video analysis techniques (Goodwin, 1994,
2001), our approach attempts to understand how
the organization of the work at hand is displayed
– made accountable – within the resources avail-
able on the computer screen where the work is
sited. This is patent to the practitioner doing the
work, it being his routine activity, but needs to
be accommodated in sociological descriptions of
that work. The adoption of a video-aided ethno-
graphic method is designed to elicit access to the
resources with which scientific researchers using
computer technologies can achieve their work
independently, and to examine what sociologists
can draw from this seemingly arid environment.

This paper examines work from a larger project
investigating the use of computerised tech-
nologies (typically, programming languages) in
different sciences which combine research with
training. The focus is on early-stage researchers
doing project work toward the attainment of
a postgraduate qualification. The focus on this
stage in a research career facilitates the obser-
vation and understanding of the settings in
question as exploratory endeavours in both
scientific knowledge and method, both of which
are actively topicalised by participants as part of
their work. Furthermore, through that topicalising,
both of those things are made available to social
research, i.e. made ‘accountable’ for both partici-
pants and observers (Garfinkel, 1967).

Our approach to video collection and analysis
draws from existing ethnomethodologically-
informed studies (e.g. Alač, 2011;Sormani et al.,
2017; Bezemer et al., 2011; Goodwin, 1994, 2001;
Lindwall, 2008), and equips our video analytic
work with a strongly contextualised under-

26

Science & Technology Studies 32(1)

standing of the setting. Preparation was under-
taken by the principal author to furnish the video
analysis with the level of scientific competence
necessary to understand the finer details of the
activities at hand (see footnote five). It is difficult
to quantify the time spent on preparation –
preparatory work has continued throughout
the analysis and presentation of the research,
each iteration prompting more ‘preparation’ to
understand previously unnoticed features of the
video. Recording the video took much less time –
approximately twenty hours over several days.

Results
Context of the Study
We examine one astrophysics researcher’s activi-
ties over one working day, as he attends to a
problem in developing a program for automati-
cally identifying instances of the astronomi-
cal phenomenon of gravitational lensing. The
researcher in question (HR) was a postgraduate
student, with an undergraduate degree in physics
incorporating the learning of programming lan-
guages in addition to classes in more conceptual
topics (i.e. fluid dynamics, quantum mechanics,
stellar evolution, etc). HR was working on his dis-
sertation within a research group consisting of 15
other postgraduates, all under supervision by a
professor of astronomy. The projects undertaken
by each ‘team’ member were topically diverse
and coordinated by their shared supervisor (who
had developed each of their projects to feed into
his ongoing research interests and projects). The
projects underway at this time were typically
designed to address technical and/or procedural
research questions – the relative ‘mundanities’
of astronomical research which may not promise
discoveries in the sense of finding and explaining
new phenomena or objects, but which address
the requirements for doing discovery work.

Returning to the ways in which HR’s ‘inde-
pendently executed’ work is conducted within
a broader scientific context, we note that this is
evidenced most clearly in two ways. First, that HR’s
position as a postgraduate researcher, working
under a supervisor who manages a thematically-
organised team of postgraduate researchers,
places him as a cog in a grander machine. In this

sense, HR’s work is inherently integrated with
other researchers working under his supervisor,
as well as with the supervisor and their colleagues
(who are vested in the success of postgraduate
projects to feed into their own research). Second,
and related, the code and images HR works with
are designed to be used and viewed by others. His
work (described below) is to produce a technique
which can be replicated and applied in other
scientific contexts and by other scientists. Hence,
the value of HR’s code and visualisations is, and
can only possibly be, evaluated on the basis of
their contribution to other scientific efforts. Taken
in this way, the problems that HR encounters in
his work (some of which we outline below) not
only obstruct the successful completion of a post-
graduate dissertation, but present difficulties in
terms of the capacity for the work to be used by
others in the scientific community. However, it
is worth reiterating that for both these reasons,
constant face-to-face coordination is not essential
to the undertaking of HR’s project, even despite
its inherent connectedness with other scientists’
work. HR’s scientific activities are social, without
co-present collaborators at the time of their
undertaking.

Turning now to the specifics of HR’s project,
we note that his project was to investigate the
potential for an automated computational
method of gravitational lens detection to displace
the non-automated/time-consuming practice
of identifying lenses solely ‘by eye’. HR’s work
was designed to be achievable through his inde-
pendent research activities – having been given
the project brief and some initial suggestions
as ‘jumping-off points’, HR was expected (by his
supervisor and by the design of his project as a
postgraduate dissertation) to develop and deploy
the necessary skills to complete the work individ-
ually and without need for supervisory guidance.
It was HR’s sole responsibility to learn how to see
and read features of his visualisations, grounded
in his existing programming and astrophysics
learning. Despite HR’s project involving writing a
bespoke program, this work was conducted using
widely available and ‘off-the-shelf ’ tools which
are simultaneously task-specific and all-purpose,
consisting of a freely-available dataset (see
below), a standard laptop computer, a program-

27

Brooker et al.

ming language (Python), several freely-available
Python libraries providing functionality relevant
to handling numbers and images within Python,
and a text editor interface within which the
programming language could be developed.

HR’s method to identify gravitational lenses
was to find, by looking at the images on the
screen, two peaks of radiation emission relating
to each stellar object in each of the images of
his 2148-strong dataset – his data consisted of
537 possible lensing events, each of which had
4 images describing a different EM (electromag-
netic) radiation profile. This information was used
to ascertain if there was a visible (to HR) distor-
tion of the radiation emitted by each object
and from that decide if the image represents a
gravitational lens.6 HR’s data was drawn from the
Sloan Digital Sky Survey (2013), a large database
of images available to scientists and the general
public. The SDSS is a long-running data collection
enterprise using a dedicated telescope at Apache
Point Observatory (New Mexico, USA) to collect
astronomical images for a variety of purposes. HR
had acquired, via his supervisor, a curated subset
of an SDSS dataset, containing candidate images
of gravitational lenses, and it is these which HR
is attempting to classify so as to develop an
automated classification procedure.

The video shows HR working on a basic
program he had already written which, so far, clas-
sified with a maximum 80% accuracy (this being
determined by the computer’s inability to produce

any kind of result for around 20% of the images).
To improve (and more systematically measure)
the program’s accuracy, HR worked on developing
a manual input system which would provide his
algorithmic technique with information about
the coordinates of the two radiation peaks on an
image, to develop his program’s capacity to locate
radiation peaks on the images it processed. The
reasoning it thus: while some images may contain
anomalies which confuse the computer’s ability
to decide, if the program is told which of the two
peaks are relevant (and ignore all others) then it
should yield better decisions about whether an
image represents a lenses.

Having decided how to improve his image-
classification program, HR wrote a script to allow
a viewing of each of the 2148 images in turn and
entry of the coordinates locating the peaks in
the image. The usage of this script – effectively
a front-end for contributing new metadata to
each image by cycling through the corpus and
appending the location by two mouse clicks – is
captured on video. The process can be boiled
down to the following (ideal) steps: he inspects
the image to see if the position of the peaks is
obvious (as is the case in Figure 1, in which there
are two clear peaks with a clear lensing interaction
between them). For more ambiguous cases, HR
can use other images of the same galactic system
in other wavelengths to cross-check against the
image being worked on (see Figure 2 – also note
the sub-display which magnifies the section

Figure 1. A ‘good’ lens with a clear lensing interaction (highlighted).

28

Science & Technology Studies 32(1)

and Sharrock (1995) note, the visual organisation
of the code is crucial to making explicit the spe-
cific reasons as to why it might be structured in
one way and not another. One method by which
programmers enable understandings of their
code is through comments. Comments never
form a functioning part of the program; their pres-
ence does not affect the program. However, their
use is common, and not only for documentation
to guide future users.

According to Button and Sharrock (1996), some
programmers see documentation as an annoyance
that is irrelevant to the ‘real’ task of getting a
program to work. In contrast, HR’s comments are
for his own use in navigating his program, high-
lighting their dual functions of organizing and
pathfinding. Though the program is inherently
structured for the purposes of machine reada-
bility – code always executes from line 1 down the
page (though this may also incorporate functions
and loops instructing the program to return to a
previous line) – the programmer has to organise
and notate this structure for human readability. As
Spencer notes:

Scientific software is an intricate labyrinth,
one whose construction and navigation are
accomplished by one and the same movement.
(Spencer, 2012: 99)

To elucidate this aspect of programming, we
examine HR’s division of his code into separate

around the cursor). Having identified the peaks ‘by
eye’, HR can record the location of the first peak
by clicking on it with the left mouse button, the
second peak with the right mouse button, then
keystroke [n] to move on to the next image and
repeat the process. Various elements of ‘looking
for’ and ‘finding’ activities bear on HR’s work.

Making code visual
Code is scripted text providing a list of operations
(and the instruction to run them) collated under
the larger structure of a program, and is writ-
ten in a dedicated programming language (i.e. a
software package for mathematical and compu-
tational processing) which a computer can imple-
ment. However, it is vital that not only computers
but programmers can read and understand code,
and as Davis and Hersh (1981) note of the work of
mathematics (which has a direct relationship to
the work of programming in a multitude of ways):

The layman might get the idea that a skilful
mathematician can sight-read a page of
mathematics in the way that Liszt sight-read a page
of difficult piano music. This is rarely the case. The
absorption of a page of mathematics on the part
of the professional is often a slow, tedious, and
painstaking process. (Davis and Hersh, 1981: 281)

Familiarity and skill with a programming language
is often essential to absorbing the vast amounts of
code making up complex programs, but as Button

Figure 2. Cross-checking in another wavelength.

29

Brooker et al.

sections (to mark points where one coding task
becomes another) by making a border of blue7
commented hash marks at the start and end of
each section. Practically, this means that HR can
easily search for specific sections of the program,
relying on visual cues. HR also uses comments to
label distinct coding tasks – visual tags that make
the subsequent code more understandable. For
instance, HR has a line appearing as follows:

#BEGINNING OF PARSELTONGUE8 SCRIPT

This comment marks out the following code as
other than typical Python language – since Parsel-
Tongue is different to Python it is useful for HR to
remind himself to read the following code as per-
taining to ParselTongue specifically (as opposed
to Python generally); this provides clarity when
it comes to reading, debugging and other tasks.
However, comments are not just labels for code.
Comments can also situate code as part of a pro-
cess. For instance, HR has the following comment
in his code:

#now mask out a few pixels around this
peak position, to detect the second
peak

As Button and Sharrock (1995) note, the visual
organisation of a program accounts for (i.e. makes
visibly apparent) its own computational organi-
sation, and comments such as this help HR to
navigate through the master code screen by giv-
ing some indication of where in the code HR is if
this is the section he’s looking at. The comment
above, by implication, relates to a section of code
that must be after the section that deals with find-
ing the first peak on an image. As such, if HR was
to search for the specific code dealing with find-
ing the first peak, the comment is a resource for
ascertaining whether to look before or after (and
also, how far before or after) the section of code
currently on screen. HR enforces what Brown and
Laurier (2005: 252) refer to in mobile-based car-
tography as a ‘structure of places’, which simulta-
neously locates the boundaries of entities within
the structure (be they geographic areas or coding
tasks) and renders the structure navigable. HR’s
practical work with comments also displays the
utility of comments as navigational devices; sign-

posts that point programmers in the right direc-
tion, helping them find the code they’re searching
for against otherwise visually undifferentiated
lines of code.

Highlighting for visibility
HR’s work also involves the integration of infor-
mation from different sources (i.e. his database of
manually inputted peak coordinates, image files,
the master code screen, etc). HR practically transi-
tions between windows by creating a temporary
visibility arrangement through highlighting his
current location in one window. In editing, HR
added to a variable in the master code to inte-
grate his new peak coordinates database into it.
Effectively, he tells the computer not to look at the
raw images, but to use his new coordinates data-
bases to direct where it focuses with regard to the
two peaks. This editing involves making two cop-
ies of the (linked) variables below:

a = DATA_DIR+‘all_sources’
afile = np.loadtxt(a, dtype=str)

This copying of variables reflects a known feature
of programming – there is ‘a propensity towards
re-use and economy in finding solutions rather
than working out a solution from scratch’ (Martin
and Rooksby, 2006: 8). HR edits the copied ver-
sions of this variable by changing variable names
and associated data (from ‘a’ to ‘b’ and ‘a’ to ‘c’,
from ‘afile’ to ‘bfile’ and ‘afile’ to ‘cfile’ etc). Most
crucially, the ‘all_sources’ script needs changing
to reflect the filenames that HR wants the new
variables to pull his manual input data from. To
do this, HR must check the filenames of these
databases, navigating temporarily away from the
master code window to the database itself (which
features the filename in its title bar). Prior to mov-
ing windows, HR highlights the ‘all_sources’ script
in the new variable ‘b’, to make it stand out against
the background of other code on-screen. HR then
goes to the database to retrieve the filename
and upon his return to the master code window,
is able to use the highlight to reorient himself
quickly and easily to the section of code that this
filename should replace – the ‘all_sources’ script
in variable ‘b’ is changed to ‘imageposition1’, and
variable ‘c’ is changed to ‘imageposition2’ accord-

30

Science & Technology Studies 32(1)

ingly (see Figure 3 below for HR doing the high-
lighting work, and a representation of the section
of code after editing).

Here, highlighting is a quick, easy and
temporary marker, which can serve as a place-
holder as the code is developed (Button and
Sharrock, 1995). HR’s highlighting work is thus an
example of a ‘micro-practice’ of screen- or scopic-
work (cf. Alač, 2011; Knorr Cetina, 2003; Lynch
and Edgerton, 1988) which is non-intrusive to the
development of the program (in that it does not
change the machine instructions) but can provide
a visual emphasis on the script-to-be-changed to
make it more ‘findable’ and thereby easily editable.

How to find through searching
Clearly, recoverability is a key issue for HR – he has
to be able to find specific images, various data-
bases (and particular information within them),
filenames, sections of code, etc. Often, the loca-
tion of the thing HR is searching for is not defined

exactly and the best possible direction can only
be phrased as ‘somewhere within this database’
or ‘somewhere in this set of images’. Various prac-
tices of ‘looking for’ items such as these come up
in HR’s work, and these practices use resources
available through HR’s design of his working prac-
tices. As Martin and Rooksby (2006: 8) note of cod-
ing, “knowledge of the code base is knowledge
of your way round it, how things might be con-
nected and what the implications of changing a
piece of code may be”. This applies to HR’s visuali-
sation work in a variety of ways. For some sought
after items, finding them can be simply entering
a filename into a form, e.g., HR is searching for an
image file in his database of peak coordinates,
and, being able to refer to original image filename
as it is on screen, he can copy this information into
the ‘find’ form, keystroke [Enter], and the com-
puter skips through the database directly to the
desired filename (see Figure 4 below).

Figure 3. Highlighting ‘all sources’, plus the finished edit of the section of code under development.

Figure 4. A ‘find’ menu.

31

Brooker et al.

In other cases a simple ‘call-and-response’ solu-
tion is unavailable – as Suchman (1994: 185) notes,
“The problem is not simply that communicative
troubles arise that do not arise in human com-
munication, but rather that when the inevitable
troubles do arise, there are not the same resources
available for their detection and repair”. In these
cases, HR relies on other (visual) resources, e.g. HR
makes a mistake in clicking on an image (image
1) and only realises this after moving to the next
image (image 2) (see Figure 5 below). HR then
needs to go back, re-examine image 1, delete the
information mistakenly entered, then re-process
the image). He does this by temporarily stepping
out of the confines of the manual input/image
processing work to recall it.

Working outside the program, HR has to call
up images using the master code window. He has
to start the manual input program again, but can
choose at which point in the sequence of images
to start: if the value of the variable ‘i’ is changed
to 309 (as in the video), then the program calls
the three hundred and ninth image in that set. HR
chooses a value of ‘i’ that he thinks relates image
1 (i = 309), only to find that the image this value
brings up is not the one he wants. He has to use
other resources to ascertain the value of ‘i’ for the
image he does want; having seen the unwanted
image now on screen he can use its visual features
to work out its likely position relative to image 1
(i = 309). The image on-screen at this point was
the one after the image he needs to redo – he can

Figure 5. Storyboard of events.

32

see image 2, but he wants to be able to see image
1 – and as such, HR can infer that the value of ‘i’
he actually requires to continue with his work is
one fewer than 309 (i = 308). Here, HR has to draw
on visual properties of the images on-screen (i.e.
does it look like the one he wants? If not, can
he recognise it? If so, can he pinpoint where in
the sequence this unwanted image is and infer
the relative position of the wanted image?) to
tie specific images to their specific points in the
process. As Goodwin (2001: 179) notes, “visual
phenomena become meaningful through the
way in which they help elaborate, and are elabo-
rated by, a range of other semiotic fields” such
as sequential organization, and by relying on
various identifiable visual properties of the things
he is searching for, HR is able to draw on a set of
resources that makes his working with visualisa-
tions achievable.

Finding visual utility in images
HR’s program is meant to distinguish between
gravitational lensing systems and other non-lens
objects, given an input of images of those objects
in one or more wavelengths. At this point in HR’s
work the program is in the process of being devel-
oped; its capacity to do this consistently is there-
fore in question. As Lynch notes of his own work
on biology lab science, ‘artifacts’ – “moments in
the work, where the ordinary transitivity of prac-
tices was a confounding issue” (Lynch, 1985: 84) –
“were not collected and analyzed in lab research,
but ‘fell out’ as occasioned troubles in ‘visibility’
or ‘interpretation’” (Lynch, 1985: 89). However, for
HR, the possibility of artifacts is more expected
given the uncertainty around the program’s abil-
ity to perform classifications. HR is mindful of such
artifacts appearing in his results as questions-
that-have-yet-to-be-addressed – are the images
the program identifies as lenses actually lenses?
Are the other objects it identifies as non-lenses
actually non-lenses? Are the images for which the
computer produces a ‘je’ error9 actually ambigu-
ous? All of these questions are answerable only
upon the production of results, and to determine
whether or not the results the program produces
are (likely to be) accurate, HR has first to classify
the images himself.

The work HR puts in to classifying the set of
images manually allows him to match results to
images and make an informed decision about
how well the program is performing, which is
something the program cannot yet do. In one
instance, HR comes across a ‘nice’ image (see
Figure 6) during manual input which he picks out
because of an interesting feature that is clearly
visible on it – a galactic arm.10 This feature is
interesting to HR for a number of reasons, chief
amongst which are that it is rare to see something
so well defined among these images, which
makes it of general interest astronomically. Hence,
HR sets this image aside – he selects (Lynch, 1988)
and values (Vertesi, 2012) it at least in part for its
aesthetic qualities as a clear representation of
a galactic object. However, the presence of this
feature is also relevant to the current program-
ming, in that it stands as a strong indicator that the
image is a gravitational lens (because at least one
of the primary objects is very likely to be a galaxy,
which is the case for a good deal of positively
identified lensing systems), and would therefore
be useful as a test case for checking against the
result the program produces. It is the finding of
a distinguishing feature in a specific image that
provides its utility. As HR explains:

This looks kinda cool, I think this is a gravitational
lens and is a-, this one looks very close to the...to
the...so you- you tend only to have one bright lens:
another one and this [the secondary object] one
looks close to the galaxy cos you can see some sort
of galactic arm. So, that might be nice to see what’s
gonna happen.

For HR, images like this, where there are criteria
for judging this a ‘strong’ lens or non-lens, are
useful in getting the program to work. Goodwin
(2001: 163) notes that it is particularly important
to attend to “the contextually based practices of
the participants who are assembling and using
[…] images to accomplish the work that defines
their profession”. With this in mind, being able
to spot these ‘strong’ images as they come up
becomes a key element of HR’s programming
work. He can capitalise on his ability to make
scientifically-informed visual classifications of sin-
gle images, which when combined with the pro-
gram’s capacity to process lots of images quickly

Science & Technology Studies 32(1)

33

(and with quantified statistical information that
indicates how accurate it judges its results to be)
provide adequate resources for refining the pro-
gram. Lynch and Edgerton (1988) mark a quantita-
tive/qualitative distinction in the scientific use of
images in astronomy, citing examples of astrono-
mers noting that images do not enable quantita-
tive tasks, but allow for broader and more intuitive
viewings of the data by eye. Lynch and Edgerton’s
(1988) approach, with which we would agree, is
not to argue that these qualitative viewings are
‘unscientific’ in any way, but to recast the work of
producing quantitative (scientific) results as some-
thing that can legitimately be achieved by a work
process featuring qualitative (subjective, creative)
elements.11 As HR looks at the image of a galaxy
with a visible galactic arm, he is able to spot at a
glance what his program has (as yet) no ability to
‘see’. This asymmetry between HR’s and the pro-
grams’ capabilities provides a tool for progressing
towards a positive outcome.

Arranging for comparison
For HR, this day’s work is to improve the program’s
ability to discriminate lenses from non-lenses (i.e.
to reduce the number of ‘je’ errors in the results,
currently in around 20% of cases). HR therefore
needs to ask if this day’s work is contributing to
this objective, and finding a way of checking this
becomes an issue. In one instance, HR compares
the results produced by two different versions
of the program: version 1 (the original program,
which takes basic data from all images) and ver-
sion 2 (the ‘new’ program, which integrates infor-

mation about the peak coordinates defined by HR
through manual input). This is intended to reveal
what is happening in the new version, and both
versions of results are fundamentally compara-
ble – there are entries for each individual image
in both versions. This is similarity to the reading
work mammographers apply to their images, as
characterised by Slack et al.:

Mammograms are arranged to be viewed in a
manner that renders the biography of a particular
breast visible. Mammograms from previous
screenings are juxtaposed with those from
the current round. Practically, this enables the
radiologist to assess if any changes have taken
place and to examine features in a retrospective-
prospective manner (Slack et al., 2007: 178)

Furthermore, Amann and Knorr Cetina note that,
“Analyzability is not just imposed upon the visual
record by labelling and other techniques. Rather,
it is built into the record from the beginning
through the way the experiment is designed”’
(Amann and Knorr Cetina, 1990: 107), and in ways
that rely on the visual arrangement of on-screen
information in the name of facilitating the work to
be done with them (Knorr Cetina, 2003). Compara-
bly, HR has pre-designed the day’s task such that
he can produce, arrange and correlate two tables
of results (from version 1 and version 2) for single
images and use any differences in results to judge
whether the new program is better or worse in
terms of its ability to discriminate lenses from
non-lenses.

Brooker et al.

Figure 6. A ‘nice’ image featuring a galaxy with visible arm (highlighted).

34

To amplify this comparability and make it more
visually manifest, HR arranges the two results
screens side-by-side, such that the results for indi-
vidual images are broadly on a level (see Figure 7).
With this configuration of the two versions’ results,
HR makes an at-a-glance comparison of the first
few cases – so far, the results seem improved in
that there appear to be fewer ‘je’ errors in version
2 than in version 1. However, looking more closely,
HR begins to compare individual cases from both
versions’ results, accenting these cases by clicking
on cells within the row (thereby drawing attention
to individual lines on each display to enable an
easy shifting of gaze between them). Thus, HR
highlights the cells in case three in version 1, then
the cells in case three in version 2, allowing him
to see that for this case, version 2 produces a ‘je’
error whereas version 1 produces a valid result.
It is this fact that prompts HR to pick out case
three specifically – for case three, the suppos-
edly ‘improved’ program (version 2) can no longer
classify an image that was classifiable in version
1. The program’s capability to make a decision
should have been improved across the board; that
it has worsened in some cases is a possible cause
for concern. HR goes through more case-by-case
comparisons for cases in version 2 resulting in a
‘je’ error, and finds that this is not a one-off, but
recurs. HR eventually attends to case nineteen (see
the magnified section of Figure 7) and explains:

Science & Technology Studies 32(1)

[The program] gives me one [a ‘je’ error] here- oof!
Thissa bad one. This is bad... I’ll just have to go
through the data to...it seems that it’s not as ideal
as I thought.

Because case nineteen has a particularly strong
numerical result in version 1, the presence of a ‘je’
error in version 2 has a stronger resonance for HR’s
work, instigating a diagnostic approach to ascer-
tain why this is so (see Visual Diagnostics below).
As Lynch notes of his biology lab researchers,
when their experiments failed to work, a question
remained: “’Did we do it correctly? Is there any-
thing we could have done that would have made
it work?’ Such questions arise in the absence of
a possible authoritative resolution by means of
comparisons to a standard” (Lynch, 1985: 114). HR
however does have a standard (of sorts) since he
understands how the two versions differ and so is
able to use an earlier version of results as a ‘sub-
standard’ (the comparative criterion being that
the old results should be worse than the new).
From looking at how this comparison is made, it
is clear that there is a marked difference between
what HR can see at first glance (i.e. that version 2 is
in fact an improvement) and what can be seen on
closer inspection (i.e. that that improvement has
some concerning caveats which must be further
investigated). Through visually arranging the two
sets of results for comparison HR allows himself

Figure 7. Comparing results side-by-side, with case nineteen highlighted in each set.

35

both a broad at-a-glance comparison between
them, and sets the stage for a more detailed case-
by-case comparison which counts towards a posi-
tive development of the project.12

Visual diagnostics
As with any other endeavour, working with visu-
alisations often heralds problems, and diagnostic
work must be performed to search for, locate and
solve them. Complex problems might even ‘hide’
errors from view, and programmers might have to
rely on a variety of diagnostic techniques to come
to a solution. These are, in the ethnomethodo-
logical parlance, the ‘normal troubles’ of program-
ming work. Given his reliance on visualisations, HR
makes use of visual resources for diagnoses. To
ascertain why his new version of the program is
producing ‘je’ errors where there were no errors
in the original untreated results. HR checks results
case-by-case, and notices that case nineteen is
giving a ‘je’ error in version 2 of the program but
a valid result in version 1. However, the question
why this should be remains – which version of the
program has made the correct call – perhaps the
program is right to call image nineteen a ‘je’ error
if the object is genuinely ambiguous (i.e. that it is
difficult to tell whether it is or is not a gravitational
lens)? Or perhaps, as the weight of evidence of
unexpected ‘je’ errors in version 2’s results sug-
gests, the program is somehow not using HR’s
manual input as he would like it to? To resolve his
problem HR calls up the original image for case
nineteen (see Figure 8 below) to classify it with his
own visual judgment. As Knuuttila notes of par-
ticular types of programs used in syntactic analy-
sis called ‘parsers’:

above all, the parser must function well, which
means that a parser must be able to carry out some
of the tasks (i.e. syntactic analysis) that humans can.
To do this, parsers do not necessarily have to be
‘psychologically realistic,’ and it is highly probably
that they will not be so. (Knuuttila, 2006: 47)

Here, HR is attempting to ensure that his own
program functions well by pitting his own abili-
ties against the ‘psychologically unrealistic’ pro-
gram’s. From a quick visual analysis of the image,
HR can see that the image for case nineteen looks
to be a clear example of a gravitational lens. HR

Brooker et al.

concludes that version 2 must be mistaken in its
classifying of image nineteen as ‘unclassifiable’,
and therefore it is something in the program that
is at fault and not the image or the lens itself. As
HR notes at this point:

This is weird; this is a really good lens! It gave me
an error on something that supposed to be, well,
perfectly fine. Oh boy. This is not going to be good.

This is a significant problem for HR’s project,
requiring work to understand why the program
is not able to classify certain lenses that he can
easily classify himself. As Lynch notes of his biol-
ogy lab researchers, for them, “the most interest-
ing (and problematic) artifacts were not definite
‘things,’ but were ‘possibilities’ […] As possibili-
ties they were not, as yet, specific features of any
microscopic scene, but were tied to readings of
the scene” (Lynch, 1985: 86). This is exactly how HR
uses visual clues to diagnose problems – he infers,
from various visual properties of what can be seen
on screen, the possibilities of what might be hap-
pening. As it stands, the next obvious possibility
as to what might be happening is that maybe HR’s
manual input – his clicking on the two peaks in
each image – was to blame.

HR opens the two databases of his peak coor-
dinates (x and y coordinates of where he clicked
on the primary peak, and x and y coordinates
of where he clicked on the secondary peak) to
ascertain exactly where on the image he clicked.
This can then be compared against the image
itself – this particular screen features a cursor
magnification function allowing HR to zoom in on
the area around his cursor and thus locate both
peaks more precisely (see Figure 2 above and
Figure 8 below). Comparing his previous clicks
on the image against where he would now click,
having taken more care in identifying the peaks,
HR finds his original clicking was not accurate
enough: the coordinates in the database are some
distance from the coordinates of the peaks as they
appear under the magnified cursor. Therefore, HR
concludes that his original manual input will need
to be re-done if it is to be of any use in terms of
improving the program. HR’s inaccuracy is compa-
rable with Suchman’s (1994) concept of a ‘garden
path result’, whereby during the course of his
manual input work, HR:

36

takes an action that is in some way faulted,
which nonetheless satisfies the requirements
of the design under a different but compatible
interpretation [i.e. that two clicks have been made,
regardless of their accuracy]. As a result, the faulty
action goes by unnoticed at the point where it
occurs. At the point where the trouble is discovered
by the user [or programmer], its source is difficult
or impossible to reconstruct. (Suchman, 1994: 170)

Here, however, HR is ultimately able to diagnose
and reconstruct the trouble’s source and find the
problem and its solution, through looking more
closely at that which (as he understands it now) he
had rushed through. As Spencer (2012: 92) notes,
“visualisation can also draw the scientist beyond
the fact of error, towards its underlying cause and
towards the future of its eventual resolution”, and
it is this feature of visualisations that HR draws
upon in returning to the pictorial view of the data.
HR is checking if the program can produce some-
thing he can identify visually, and finds the issue
is his own precision placement in a visual field; his
accuracy with the manual input, which limits the
program’s ability to consistently distinguish gravi-
tational lens.

Discussion
The argument presented here is deeply-rooted in
major themes within the field of STS dealing with
the interactivity and collaboration involved in pro-
ducing scientific knowledge, particularly pertain-
ing to the usage of digital data and programming
languages. This work has been characterised by

Science & Technology Studies 32(1)

some as purely a matter of the social and cultural
organisation of scientific research, where suc-
cess in science is achieved through the effective
bringing together different knowledges and skills
through collaborative interaction (Agar, 2006;
Bruun and Sierla, 2008; Götschel, 2011; Hine, 2006;
Louvel, 2012; Mulinari et al., 2015; Pettersson, 2011;
Rall, 2006; Sundberg, 2010; Voskuhl, 2004). The
present paper extends its scope to settings where
there is “little overt, bodily behavior” (Bruun and
Sierla, 2008: 140) other than independently-con-
ducted mouse and keyboard use. Though we do
not deny the sociability inherent to all scientific
work, we focus our attention on precisely such
‘independently executed’ activities, in order to
round out the discussion beyond the more overt
social and cultural focus that has historically been
given primacy in the field of science and technol-
ogy studies.

With this in mind, our attention falls upon
the ways in which work is achieved through the
material and practical usage of screen-based
resources – the visuals and visualisations that are
generated and used in routine tasks that inform
reasoning and inference based on what can be
seen on-screen. The material aspects of scientific
research work raise a perennial question for STS
around a (supposed) contradiction: the experi-
menter’s regress. Ruivenkamp and Rip (2010)
describe Collins’ (1992) original conception of
the problem: “The unknown is to be captured in
an experiment, using instruments adequate to
the task. However, we do not know whether the
instrument is adequate until we are sure it gives us

Figure 8. The image for case nineteen – the clear distortion of the radiation emitted by the two objects indicates a
good lens. Also note HR’s use of the magnification display to closely analyse this distortion.

37

correct readings. But since the phenomenon itself
is unknown yet, there is no way to decide what
correct readings are” (Ruivenkamp and Rip, 2010:
4). This paper has aimed indirectly to puncture
this standard conception by demonstrating, in
the fine detail of their scopic work, that scientists
can find ways to measure without opening up a
regress. Hence, the routine character of these
practices is (or, rather, should be) a critical topic
for STS researchers. As Garfinkel et al. (1981:139)
note, “Situated inquiries are practical actions and
so they must get done as vulgarly competent
practices”. It is practices such as these that we
have gone some way towards unpacking here.

Invariably, for researchers working with visu-
alisations these practices are bound up in the
visual resources available, not just within code
but throughout the visualisations themselves. As
Burri and Dumit (2008: 302) note, “Visual expertise
also creates its own form of literacy and speciali-
zation”. Such literacy involves the skill to use visu-
alisations as resources and as sources of resources.
Throughout the day’s work HR could draw on
the clues left as part of comments in his code,
temporary visibility arrangements, the ‘sequenti-
ality’ of images and visible features of the images
themselves, the ability to distinguish by eye
between ‘good’ lenses and non-lenses, arrange-
ments to facilitate both general (i.e. between
tables) and direct (i.e. between individual cases)
comparisons of results, and comparisons of
different versions of the program. This particular
constellation of visual resources is useful to HR
because achieving a working program is the
object of his work. HR’s visualisations are not
simply outputs; they are new resources for doing
new things. Visuality is both the topic and the
means to address that topic, meaning HR does not
have to rely entirely on the results produced by
the program to inform his work – the results them-
selves can be legitimately questioned. This makes
the program an interplay between the original
observed data (the images) and the results, facili-
tating an iterative process that requires a ‘building
up’ of understanding of what effects manual input
might have on results, and accordingly, what
information can be drawn from the results and
associated diagnostic work about the quality of
the manual input. There is no decisive criterion of
which iteration might be the last, yet this never-

Brooker et al.

theless allows for the development of a program
that will eventually be able to discriminate lenses
from non-lenses with so few ‘je’ errors as to make
the whole collection of results statistically useful.

We have tried to show how the practical tasks
involved in visualisation-based research and
programming iteratively inform each other, and
more widely, how work of this kind is conducted
in such a way as to contribute to the successful
progress of a scientific project which is reflective
of scientific research in a computational age. It is
worthy of note that HR is not any kind of special
combination of programmer and scientist, in
that many recent science graduates now have
some introduction to and hands-on experience
with one or more programming languages as an
essential part of their training. For HR, learning
how to construe visualisations is a joint product
of his disciplinary knowledge of astrophysics and
his programming skill. The instances considered
simultaneously reflect programming activities for
scientific purposes, the two inextricably bound
together in the work. What our analysis of the
collected video data has shown is that despite the
work at hand being visible through a computer
screen and associated keyboard and mouse
usage, it is possible also to attend to the sense in
which it makes available a set of material practices
for achieving scientific knowledge.

We have developed six ‘themes’ in HR’s work
activities, revealing a selection of work activities
that are mundane and routine in astrophysics
programming, but which have been, at times, over-
looked from sociology’s accounts owing to their
material character. Without denying that scien-
tific work is extensively collaborative and inter-
active and affected by social and cultural factors,
we do take issue with how such a focus might
be singularly applied to the effect of neglecting
other aspects of what is going on. In this regard,
we have explicated HR’s work as a ‘twinned’13
problem-space of scientific phenomena and
software. The software constructs and constrains
HR’s perception of the data – literally, his ability to
perceive gravitational lenses in the images– whilst
the phenomenon constructs and constrains the
use of the software (in that his programming work
relies upon an accurate scientific understanding
of gravitational lenses).

38

Science & Technology Studies 32(1)

References
Agar J (2006) What Difference Did Computers Make? Social Studies of Science 36(6): 869-907.

Alač M (2011) Handling Digital Brains: A Laboratory Study of Multimodal Semiotic Interaction in the Age of
Computers. Cambridge, MA: The MIT Press.

Amann K and Knorr Cetina K (1990) The Fixation of (Visual) Evidence. In: Lynch M and Woolgar S (eds) Repre-
sentation in Scientific Practice. Cambridge, MA: The MIT Press, pp. 85-121.

Bezemer J, Cope A, Kress G and Kneebone R (2011) “Do You Have Another Johan?” Negotiating Meaning in
the Operating Theatre. Applied Linguistics Review 2: 313-334.

Bijker EM, Sauerwein RW and Bijker WE (2016) Controlled Human Malaria Infection Trials: How Tandems of
Trust and Control Construct Scientific Knowledge. Social Studies of Science 46(1): 56-86.

Brown B and Laurier E (2005) Designing Electronic Maps: An Ethnographic Approach. In: Meng L, Zipf A and
Reichenbacher T (eds) Map-Based Mobile Services. Berlin: Springer-Verlag, pp. 241-257.

Bruun H and Sierla S (2008) Distributed Problem Solving in Software Development: The Case of an Automa-
tion Project. Social Studies of Science 38(1): 133-158.

Burri RV and Dumit J (2008) Social Studies of Scientific Imaging and Visualization. In: Hackett EJ, Amster-
damska O, Lynch M and Wajcman J (eds) The Handbook of Science and Technology Studies, Third Edition.
Cambridge, MA: The MIT Press, pp. 297-318.

Button G and Sharrock W (1994) Occasioned Practices in the Work of Software Engineers. In: Jirotka M and
Goguen J (eds) Requirements Engineering: Social and Technical Issues. London: Academic Press/Harcourt
Brace and Company, pp. 217-240.

Button G and Sharrock W (1995) The Mundane Work of Writing and Reading Computer Programs. In: ten
Have P and Psathas G (eds) Situated Order: Studies in the Social Organisation of Talk and Embodied Activ-
ities (Studies in Ethnomethodology and Conversation Analysis No. 3). Washington DC: University Press of
America, pp. 231-258.

Button G and Sharrock W (1996) Project Work: The Organisation of Collaborative Design and Development
in Software Engineering. Computer Supported Cooperative Work: The Journal of Collaborative Computing 5:
369-386.

Carusi A (2008) Scientific Visualisations and Aesthetic Grounds for Trust. Ethics and Information Technology
10(4): 243-254.

Carusi A (2011) Computational Biology and the Limits of Shared Vision. Perspectives on Science 19(3): 300-336.

Carusi A, Novakovic G and Webmoor T (2010) Are Digital Picturings Representations? In: Electronic Visualisa-
tion and the Arts, London, UK, 5-7 July 2010: 174-184. Available at: http://www.bcs.org/upload/pdf/ewic_
ev10_s7paper2.pdf (accessed 3.3.2017).

Collins H (1992) Changing Order: Replication and Induction in Scientific Practice. London: SAGE.

Coopmans C (2006) Making Mammograms Mobile: Suggestions for a Sociology of Data Mobility. Informa-
tion, Communication & Society 9(1): 1-19.

Coopmans C (2011) ‘Face Value’: New Medical Imaging Software in Commercial View. Social Studies of Science
41: 155-176.

Coulter J and Parsons ED (1990) The Praxiology of Perception: Visual Orientations and Practical Action.
Inquiry 33: 251-272.

Daipha P (2010) Visual Perception at Work: Lessons from the World of Meteorology. Poetics 38: 150-164.

Davis PJ and Hersh R (1981) The Mathematical Experience. Boston: Birkhauser.

Garfinkel H (1967) Studies in Ethnomethodology. New Jersey: Prentice Hall, Inc.

39

Brooker et al.

Garfinkel H, Lynch M and Livingston E (1981) The Work of a Discovering Science Construed with Materials
from the Optically Discovered Pulsar. Philosophy of the Social Sciences 11(2): 131-158.

Goodwin C (1994) Professional Vision. American Anthropologist 96(3): 606-633.

Goodwin C (2001) Practices of Seeing Visual Analysis: An Ethnomethodological Approach. In: Van Leeuwen
T and Jewitt C (eds) Handbook of Visual Analysis. London: Sage, pp. 157-182.

Götschel H (2011) The Entanglement of Gender and Physics: Human Actors, Work Place Cultures, and
Knowledge Production. Science Studies 24(1): 66-80.

Hine C (2006) Databases as Scientific Instruments and their Role in the Ordering of Scientific Work. Social
Studies of Science 36: 269-298.

Hoeppe G (2012) Astronomers at the Observatory: Place, Visual Practice, Traces. Anthropological Quarterly
85(4): 1141-1160.

Hoeppe G (2014) Working Data Together: The Accountability and Reflexivity of Digital Astronomical Practice.
Social Studies of Science 44(2): 243-270.

Kettenis M, Van Langevelde HJ, Reynolds C and Cotton B (2005) ParselTongue: AIPS Talking Python. In:
Astronomical Data Analysis Software and Systems XV, San Lorenzo de El Escorial, Spain, 2-5 October 2005:
497-500. Available at: http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2006ASPC..351..497K
&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf (accessed
3.3.2017).

Knorr Cetina K (2003) From Pipes to Scopes: The Flow Architecture of Financial Markets. Distinktion 7: 7-23.

Knuuttila T (2006) From Representation to Production: Parsers and Parsing in Language Technology. In:
Lenhard J, Küppers G and Shinn T (eds) Simulation: Pragmatic Construction of Reality. Dordrecht: Springer,
pp. 41-55.

Knuuttila T and Boon M (2011) How Do Models Give Us Knowledge? The Case of Carnot’s Ideal Heat Engine.
European Journal for Philosophy of Science 1(3): 309-334.

Knuuttila T, Merz M and Mattila E (2006) Editorial: Computer Models and Simulations in Scientific Practice.
Science Studies 19(1): 3-11.

Larivière V, Desrochers N, Macaluso B, Mongeon P, Paul-Hus A and Sugimoto CR (2016) Contributorship and
Division of Labor in Knowledge Production. Social Studies of Science 46(3): 417-435.

Lindwall O (2008) Lab Work in Science Education: Instruction, Inscription, and the Practical Achievement of
Understanding. Linköping: Linköping University Faculty of Arts and Sciences.

Louvel S (2012) The ‘Industrialization’ of Doctoral Training? A Study of the Experiences of Doctoral Students
and Supervisors in the French Life Sciences. Science & Technology Studies 25(2): 23-45.

Lynch M (1985) Art and Artifact in Laboratory Science: A Study of Shop Work and Shop Talk in a Research Labo-
ratory. London: Routledge.

Lynch M (1988) The Externalized Retina: Selection and Mathematization in the Visual Documentation of
Objects in the Life Sciences. Human Studies 11(3): 201-234.

Lynch M (2011) Image and Imagination: An Exploration of Online Nano-Galleries. In: Visualisation in the Age
of Computerisation, Oxford, UK, 25-26 March.

Lynch M and Edgerton SY (1988) Aesthetics and Digital Image Processing: Representational Craft in Contem-
porary Astronomy. In: Fyfe G and Law J (eds) Picturing Power: Visual Depiction and Social Relations. London:
Routledge and Kegan Paul, pp. 184-220.

40

Science & Technology Studies 32(1)

Martin D and Rooksby J (2006) Knowledge and Reasoning About Code in a Large Code Base. TeamEthno-
online, 2: 3-12, https://archive.cs.st-andrews.ac.uk/STSE-Handbook/Other/Team%20Ethno/Issue2/Martin.
pdf (accessed 3.3.2017).

Messeri L (2017) Extra-Terra Incognita: Martian Maps in the Digital Age. Social Studies of Science 47(1): 75-94.

Merz M (2006) Locating the Dry Lab on the Lab Map. In: Lenhard J, Küppers G and Shinn T (eds) Simulation:
Pragmatic Construction of Reality. Dordrecht: Springer, pp. 155-172.

Mulinari S, Holmberg T and Ideland M (2015) Money, Money, Money? Politico-Moral Discourses of Stem Cell
Research in a Grant Allocation Process. Science & Technology Studies 28(2): 53-72.

Pettersson H (2011) Making Masculinity in Plasma Physics: Machines, Labour and Experiments. Science
Studies 24(1): 47-65.

Pickering A (ed) (1992) Science as Practice and Culture. London: The University of Chicago Press.

Rall D (2006) The ‘House That Dick Built’: Constructing the Team that Built the Bomb. Social Studies of Science
36: 943-957.

Rooksby J, Martin D and Rouncefield M (2006) Reading as Part of Computer Programming. An Ethnometh-
odological Enquiry. In: Romero P, Good J, Chaparro EA and Bryant S (eds) Proceedings of the 18th Workshop
of the Psychology of Programming Interest Group, Sussex, UK, 7-8 September 2006: 198-212. Salford:
Psychology of Programming Interest Group. Available at: http://www.ppig.org/papers/18th-rooksby.pdf
(accessed 3.3.2017).

Ruivenkamp M and Rip A (2010) Visualizing the Invisible Nanoscale Study: Visualization Practices in Nano-
technology Community of Practice. Science Studies 23(1): 3-36.

Slack R, Hartswood M, Procter R and Rouncefield M (2007) Cultures of Reading: On Professional Vision and
the Lived Work of Mammography. In: Hester S and Francis D (eds) Orders of Ordinary Action: Respecifying
Sociological Knowledge. Aldershot: Ashgate Publishing Limited, pp. 175-193.

Sloan Digital Sky Survey (2013) Mapping the Universe. Available at: www.sdss.org (accessed 3.3.2017).

Sormani P (2014) Respecifying Lab Ethnography: An Ethnomethodological Study of Experimental Physics.
Surrey, UK: Ashgate.

Sormani P, Alač M, Bovet A and Greiffenhagen C (2017) Ethnomethodology, Video Analysis and STS. In: Felt
U, Fouché R, Miller CA, Smith-Doerr L (eds) The Handbook of Science and Technology Studies. London: The
MIT Press, pp. 113-138.

Spencer M (2012) Image and Practice: Visualization in Computational Fluid Dynamics Research. Interdiscipli-
nary Science Reviews 37(1): 86-100.

Suchman LA (1994) Plans and Situated Actions: The Problem of Human Machine Interaction. Cambridge:
Cambridge University Press.

Sundberg M (2010) Organizing Simulation Code Collectives. Science Studies 23(1): 37-57.

Vertesi J (2012) Seeing Like a Rover: Visualization, Embodiment, and Interaction on the Mars Exploration
Rover Mission. Social Studies of Science 42: 393-414.

Vertesi J (2015) Seeing Like a Rover: How Robots, Team, and Images Craft Knowledge of Mars. London: The
University of Chicago Press.

Voskuhl A (2004) Humans, Machines and Conversations: An Ethnographic Study of the Making of Automatic
Speech Recognition Technologies. Social Studies of Science 34: 393-421.

Wittgenstein L (1974) Philosophical Investigations. Oxford: Basil Blackwell & Mott, Ltd.

41

Brooker et al.

Notes
1. Certainly the astrophysics research presented here is computational through and through, yet there

are elements to other types of astrophysics work which are decidedly ‘manual’ and which may only
use software rather than develop it – see for instance Hoeppe (2012) on the work of collaboratively
operating a satellite telescope to collect. In this sense we say only that the specific type of astrophysics
work depicted here is inherently computational, and explore how this specific type of work is achieved.

2. The Feynman under discussion is noted physicist Richard Feynman. Rall (2006) investigates his work
as the manager of a computing team building the atomic bomb, which first consisted of a) untrained
scientists’ wives, then b) computer-trained WACs (Women’s Army Corps) and finally c) soldiers with
computer training and full knowledge of the project objectives.

3. The two versions of Feynman discussed here – Rall’s (2006) Feynman-as-manager and our Feynman-as-
scientist – are not the same in that they do not do the same things, they do not use the same technical
languages, they do not talk to the same people, they do not draw on the same fields of knowledge to
achieve their work, and so on.

4. It may be important to note that although our goal is the same – to see what else there might be to
visualisation- and visual-work beyond interactive and collaborative face-to-face sociality – our project
differs from Carusi’s (2011). Where Carusi (2011) aims to explore the problem philosophically, our work
treats the issue as empirical (cf. a similar debate between Bloor and Lynch in Pickering, 1992).

5. This preparatory work has involved (on the part of the principal author): talking to participants and their
peers and supervisors about their project work and their role in wider research projects and groups;
learning elements of undergraduate-level textbook science and mathematical techniques; acquiring
a working knowledge of the Python programming language, and; attending undergraduate lectures
across all four years of the University of Manchester’s MPhys degree (including lectures on theoretical
physics, mathematical requirements for physicists, and various aspects of astrophysics including stellar
evolution, galaxies and early universe cosmology).

6. A gravitational lens is a phenomenon whereby electromagnetic radiation (ultraviolet rays, radio waves,
visible light in the optical range, x-rays, etc) is ‘bent’ by the gravity of another high-mass object nearer
to us in our line of sight. Therefore, a lensing system can be identified by the presence of an intercon-
nected distortion between the radiation that each object emits, and a non-lens can be identified by the
absence of this feature.

7. Python comments in the editor HR is using are (primarily) signified by the use of a hash symbol and
appear in blue, further visually distinguishing them against other code.

8. ParselTongue is an interface to simplify complicated data reduction in Python (i.e. turning long strings
of numerical information into images) with techniques from an add-on Python module (Astronomical
Image Processing System, or AIPS) (Kettenis et al., 2005).

9. A ‘je’ error in HR’s program was a result that signified that the program was unable to classify the image
in question as a lens or otherwise – most likely the program has identified significant evidence for both
instances (i.e. the image is a lens, the image is a non-lens) and can’t thereby reject either.

10. The ‘objects’ in lensing systems are often galaxies. Though there are different types of galaxy, spiral
galaxies (such as our own Milky Way) are comprised of a central concentrated ‘bulge’ of stars and a flat
rotating disc of stars, dust and gas. This disc features long thin ‘arms’ of stars, which appear like a spiral
due to their rotation.

11. This may in fact be a key reason for the continuing human involvement in science despite the sweeping
advances offered by computing power – where computers are far more capable as number crunchers,
they are somewhat lacking in the qualitative and creative department, which seems to be just as much
a requirement for the production of scientific knowledge (Lynch and Edgerton, 1988).

42

Science & Technology Studies 32(1)

12. Although these results look bad after close comparison, this is not an unrecoverable disaster for HR – it
certainly is an upset that means his programmed technique for finding lenses and non-lenses is not
working yet. However, it also points to a need (and direction) for further development and improve-
ment, without which the project would be incomplete.

13. This is not to limit the problem-space to two factors only. This statement should be considered as part
of the argument against limiting sociology’s remit to only the interactional features of scientific work.

