
37

Numerical simulations have become
important and widely used to perform
scientifi c work, not least in natural
scientifi c fi elds where traditional
experiments are unattainable. This is the
case in meteorology, oceanography, and
astrophysics. Temporal and spatial scales
of phenomena such as galaxy formation,
ocean currents, or climate change make
them impossible to bring into a laboratory,
but as mathematical representations
they can be brought into computers.1
It is when they appear in the form of
computer programs that these models
can generate numerical simulations and
new scientifi c knowledge.2 Numerical
models can therefore be understood
as codes (cf. Mackenzie, 2006). How
scientists work with and relate to them
is an important aspect in reaching a

Organizing Simulation Code Collectives

Mikaela Sundberg

This article examines the ways researchers develop and use computer programs
for numerical simulations and the different social relationships that are involved
in creating the frames for these activities. On the basis of ethnographic case
studies of numerical simulation practice in astrophysics, oceanography, and
meteorology, including climate modelling, the present article discusses how
work with simulation codes can be discussed by means of a typology of
simulation code collectives. This typology provides a systematic account of how
a particular and increasingly important form of software development and use
takes place in science. It also contributes to current discussions on the relation
between producers and users of technology by suggesting that the defi nition of
them as empirical categories can be understood through the social relationships
that the people (simulationists) working with them are embedded in.

Keywords: simulation codes, organization, user/developer distinction

better understanding of contemporary,
computer-based scientifi c practice.

Simulation codes are tricky to develop
and work with. It often takes a long time
to develop a code that does not crash
during calculations and when suffi ciently
stabile, a code is still sensitive to how
the “numerical experiments” conducted
with it is set up in terms of initial
conditions, parameter settings etc. (see
e.g. Winsberg, 2003; Kennefi ck, 2001).
In addition, output is often diffi cult to
evaluate and this is one of the reasons
why simulationists with similar scientifi c
interests not only compete to produce
the most interesting and innovative
results, but also collaborate to agree upon
standard results for certain scientifi c
problems (Sundberg 2008; forthcoming).
Many simulationists use codes they have

Science Studies, Vol. 23 (2010) No. 1, 37-57

Science Studies 1/2010

Science Studies 1/2010

38

built themselves, and their professional
reputations are tied to the simulation
codes they have developed (cf. Lahsen,
2005). When codes are accessible for
others, for example, by being possible to
download from a webpage, developers
are no longer in control of how “their”
codes are applied. Considering this lack
of control in relation to the diffi culties
in using simulation codes in general, it
becomes interesting to investigate the
different ways the simulation codes
are distributed and shared and the
possibilities of organizing and controlling
this venture.

Literature on software distinguishes
among fi rst, open software where coding
is visible and proprietary software where
coding is kept secret and second, among
free and commercial software (see e.g.
Fuller, 2003). Free open source software
has enrolled huge amounts of software
developers and the phenomenon
has been much debated among the
practitioners themselves (Mackenzie,
2006: 69). Sociological studies are less
common, but they have, among other
things, investigated the dynamics within
groups of people developing and using
a particular code or operational system
(e.g. Ratto, 2007; Stewart, 2005; von Krogh
et al. 2003). 3 Sociological interest has
propagated from workers and production
to consumers and consumption and
likewise, STS has shifted focus from
production and producers of technology
to use and users of technology. This has
led to problematizations of previous
conceptions of users and designers
and the boundary between them. 4
Information technology is an area in
which this question becomes highlighted,
in part due to the proliferation of free
open source software.

Model developers are most of the
time also some kind of users (Lahsen,

2005), but the distinction between
developers (authors/producers/
designers) and users have nevertheless
been used to differentiate between types
of simulationists (see e. g. Dowling,
1999; Merz, 1999; Sundberg, 2005).5 In
addition, “developer” and “user” are
important empirical categories that
simulationists use to construct their
social world (cf. Mulkay and Gilbert 1982).
There is a salient discourse defi ning
simulationists as either “developers”
or “users”. “Developers” focus on the
inside of the code and try to understand
it, whereas “users” approach codes as
black-boxes (cf. Woolgar, 1991). From a
user perspective, code development is
time-consuming and costly, especially
since code development is often only
reported in technical reports. To publish
results based on simulations is a more
prestigious activity. Why invent the wheel
twice when someone else provides the
technology needed to “do science”? Free
codes are readily applicable after the set
up of initial (and occasionally boundary)
conditions and usually a few alterations
of particular parameter values. More
extensive adjustments or additional
components are necessary when available
codes do not provide exactly what is
required for a particular application.
Also simulationists who take their point
of departure in a code constructed by
someone else may therefore develop a
particular piece for their own use, while
relying for the existing framework for the
rest. This implies –not surprisingly–that
the boundary between the activities of
development and usage, and between
researchers who develop or use, is unclear
in practice.

The present article aims to explain
how development and use of simulation
codes, and the roles related to these
activities, can be understood by analyzing

39

Mikaela Sundberg

the different ways that work with codes
is organized. By means of a typology,
the article suggests how simulationists
together with the codes they work with
constitute different simulation code
collectives. With a focus on organization
rather than the content of scientifi c
knowledge, the article analyzes how
simulation code collectives are organized
and what implications this has for the
defi nition and control of simulation
code use and development. The purpose
is also to lift the gaze from the level of
single projects or programs and provide
basis for some more general conclusions.
This is achieved by presenting a typology
that informs further investigation of
numerical simulations in science, and
possibly also software development in
general.

Next, an introduction to the
typology clarifi es its theoretical basis in
organizational theory. This is followed by
a short section on methodology, including
a presentation of the three ethnographic
case studies of scientifi c numerical
simulation practice in astrophysics,
meteorology, and oceanography that
constitute the basis for the analysis. Then I
present each category of the typology and
position them in relation to technology
studies on users and developers as well
as to literature on open source software.
In the concluding part, I summarize the
analysis and discuss some themes that
illustrate the usefulness of the typology in
generating questions that would promote
our understanding of how numerical
simulations take place in science.

Organizing User and Developer
Relations - An Ideal Typology of Code
Collectives

In her analysis of high energy physics
experiments as super organisms,

Knorr Cetina (1995) draws attention to
the detector as a central and centring
object within the communal life-form.
Without implying that simulation codes
hold the same central place–which they
rarely do–Knorr Cetina’s discussion
nevertheless provides a basis for talking
of users and developers of a particular
simulation code as constituting a form
of collective. This is also similar to how
Collins (1985: chap 3) used the so-called
TEA set to defi ne a set of scientists with
one problem in common, but others not
in common. The notion of simulation
code collectives is an attempt to
capture the organizational aspects
of technology (code) use, rather than
the question of what knowledge that is
required to develop and use it (see e.g.
Winsberg, 1999; 2003). The analysis will
nevertheless touch upon the problems
with replicating simulation codes–to
make them work also when used by
others than the original developer (cf.
Collins 1985, chap 3).

A simulation code collective consists
of simulationists who work with a
particular code. These simulationists
do not have to consider themselves to
be a group of some kind. The defi ning
characteristic of this form of collective
is that all its simulationists work with,
and are therefore related through, the
same code. The relationships between
the simulationists and between the
simulationists and the code may be of
different kind. I focus on how it differs in
terms of organization.

The construction of an ideal typology
of code collectives helps us to discuss how
work with simulation codes is differently
organized and what consequences
this has for how use and development
is defi ned. Ideal types are theoretical
constructions that do not have to
have correspondance in any concrete

Science Studies 1/2010

40

empirical instance. They serve as means
to help in abstraction, without loosing
the meaning of the actors (Weber, [1904]
1949).

Use/
Development

Open Closed

Free Code
developed all
around

Code spread
all around

Limited Code of the
group

Code of the
centre

Table 1 A typology of simulation code
collectives.

In this typology, exhibited in table 1.1,
the use dimension has two categories.
These categories refer to whether a
code is accessible for every researcher
who would like to use it for numerical
simulations (free) or whether access
is limited and the code is then only
available for a certain group of people
(restricted). The development dimension
is constructed in the same way. Is any
user welcome to make changes inside the
code and add features to it or are there
restrictions concerning this activity?
Thus, code collectives are not formal
organizations, yet I will explain how
they can be understood in relation to
organizational elements.

Ahrne and Brunsson (2009) emphasize
the importance of partial organization
and how attempts to create order through
organizing can be found outside and
between formal organizations through
use of some, but not all, elements of
organization. Membership, hierarchy,
rules, monitoring, and sanctions are such
organizational elements. Membership
entails obtaining a certain identity (as
member), and therefore as expecting to be
treated by the organization in a way that
differs from non-members.6 Hierarchy is
the right to decide over others, where the

source of power is a decision. Members
have to comply with rules, which are
mostly written and always pronounced.
An organization has the right to monitor
compliance with them and also to bring
sanctions. Furthermore, Ahrne and
Brunsson (2009) contrast organization,
and the use of organizational elements,
with the original sense of the term
network as referring to personal and
informal relations. A network which
introduces organizational elements
acquires an altered status.7

How can we understand use and
development of simulation codes in
relation to organizational elements (or
the absence of them)? In organizational
terms, free or restricted refer to whether
membership is required, or expected, for
certain activities (use or development).
Membership is the most important
organizational element in the typology,
but in practice, it is combined with
others. These elements, as well as
certain limitations of the typology, are
further discussed in the sections on
particular types of collectives. The order
of presentation is based on increasing
inclusion of organizational elements into
the collectives.

Methodological Considerations

The typology is based on three case
studies of numerical simulation practice
within meteorology, oceanography,
and astrophysics. The primary material
consists of interviews and observations,
mainly carried out in Sweden. I have
interviewed scientists who work with
numerical simulations in the fi elds
of astrophysics (eleven interviews),
meteorology (seven interviews), and
oceanography (twelve interviews).8
Nowadays, both atmospheric and
ocean modelling is often part of

41

coupled climate modelling exercises,
where ocean and atmospheric
models are connected. Five of the
ocean simulationists and six of the
meteorological simulationists worked
with an ocean/atmospheric component
of a climate model. Participant
observation has been conducted during
about 25 seminars, one workshop,
three conferences, and two code user
meetings. 9 I also draw upon additional
material from an earlier study of
meteorological research (see Sundberg,
2005). This includes ten interviews
with meteorological simulationists at a
research department and fi ve interviews
at the Swedish weather service. I
recorded the former, but only took notes
during the latter.

Secondary material consists of
information presented at the offi cial
web pages (including user’s guides,
manuals, reports) of certain codes and
e-mail lists. This material covers 13
astrophysics codes, six meteorological
codes, seven ocean codes, and two
coupled climate models. Most of these
are codes that my informants work
with, but a few additional codes have
also been selected. The reason for these
additional codes is that they appear to
be among the most widely known and
used codes in the different communities
(when these were not already included).
Most of these widely used codes are
obviously developed outside of Sweden,
particularly in the US. Whereas
interviews and observations primarily
informs about perspectives, common
knowledge, and practice–the actors’
level of meaning–, public material
informs about offi cial guidelines,
recommendations, and rules–important
organizational elements.

The typology evolved from a hybrid
approach that combined a data-driven

approach with a theory-driven approach
(Boyatzis 1998: 51ff.). This involved
following an inductive approach in
identifying themes, but also the use
of theories to guide the articulation of
meaningful themes. Thus, the typology
grew out of a three-stage process
involving a inductive analysis of primary
material, where I classifi ed all material on
collaborative work with simulation codes
and distinguished among free use and free
development and developed analytical
codes (themes) regarding the conditions
and organization of these collaborations.
I then used basic organizational concepts
to further clarify dimensions of a
typology and used secondary material for
further development. Since it is an ideal
typology, a few code collectives fi t into a
combination of two types rather than one
particular. I use accounts on code work
as well as descriptions from web pages to
illustrate the different types. Importantly,
my aim is not to create types that
characterize code work in each discipline,
but to present types that describe general
as well as specifi c patterns. Thus, quotes
from researchers are primarily used to
illustrate features of collectives, rather
than as representative accounts from a
researcher with a particular disciplinary
affi liation.

A fi nal, methodological question
concerns how to distinguish between
different codes. This will be done based
on the names that the codes have
acquired (cf. Bezroukov, 1999). Different
names do not refl ect the theoretical
content and underlying premises
of the codes. Many codes in a given
research fi eld are based on the same
equations, but they differ in terms of,
for example, the numerical method/
technique they employ, programming
conventions, and formulation of sub-grid
parameterizations (cf. Edwards, 2001;

Mikaela Sundberg

Science Studies 1/2010

42

Sundberg, 2009; Merz, 1999). Codes exist
in several versions or generations, often
distinguished by numbering (1.0, 1.1,
2.0 etc). Nevertheless, names are more
than simple reference markers. They
point at the social identities of codes (cf.
Ahrne and Brunsson, 2008: 93ff.) and
simulationists gather around codes as an
effect of their name.

The Code of the Group

Although I am not describing the
dynamics of collectives in terms of how
they develop from fi tting into one type to
fi tting into another, it is worth pointing
out that the code of the group collective
can be seen as the most original type of
collective. It also appears as the most
common type. It is therefore natural to
start the presentation here.

The code of the group collective is
closed for researchers outside of the
research group and there is no user which
has not also developed and improved
the code. Development is free within
the collective, not among simulationists
in general. When you work within the
code of the group, you have to be (or
have been) a developer to be a user. The
latter role presupposes the former role.
Everyone in the collective has this double
relation to the code.

A single simulationist is responsible
for the birth of the code and the collective
grows if s/he collaborates with colleagues–
researchers and/or doctoral students–to
further develop the code. The number of
people working with each code is small
and the codes which fi t into this category
are rarely well-known outside the group,
perhaps in part because the network-
character of the collective makes it quite
invisible from the outside (cf. Ahrne
and Brunsson, 2009). Thus, this type of
code does not belong among those in
each fi eld that researchers outside the

collective gossip about (these seem to
be quite few). Put differently, the codes
themselves do not have any reputations,
but the researchers who work with them
may have.

Because work conducted by this
type of code collective is unrelated
to formal organizational boundaries,
the simulationists in the collective
can bring their code with them to new
organizational affi liations and continue
development and use wherever they
want (as long as they do not move into
an organization where work is dedicated
to a particular code). This happens when
simulationists move from one department
to another, especially in the early stage of
their careers when they fi nish their PhD’s
or post doc period. The consequence
is that if there is no explicit attempt to
streamline development, codes end
up being developed in different ways.
Everyone works on a particular version
of the code and all of them are equal.
There is no status difference between the
various versions.

Even if there are no formal restrictions
that deter researchers from sharing their
codes with others, there are other reasons
not to do it. One astrophysicist, who
has developed several codes and who
identifi es himself as “clearly in the kind of
developing code, developing algorithm
side”, said the following:

The people who write codes don’t...
very few take the trouble of making
it such so that you can easily give it to
other people to use. Partly this takes a
lot of time. Also because it’s actually
quite hard to make something which
works on very many different problems
without…There is a little bit the feeling
that you have to really know what you
are doing before you use the codes.
There is a psychological barrier almost,
you don’t want to… You don’t want to

43

take the responsibility that people do
stupid things with your code. And so
there are only a few groups that really
have come out with codes that many
people use. (Emphasis added)

This account implies that there is a fear
of making code available to others. One
reason for being afraid of that users “do
stupid things with your code” (whatever
that means) is that it might affect the
reputation of the developer of the
code. The developer is identifi ed with
the code by others and also identifi es
him/herself with it, including on an
emotional level (cf. Lahsen, 2005). This
suggests the importance of controlling
users in different ways. This is further
discussed in relation to the free codes.
The account also suggests how additional
work is required to make the code user-
friendly (“easily give it to other people”),
for example, by writing understandable
comments in the code and some form
of user’s manual. There is less written
documentation to be found for the code
in the code of the group type of collective
because user-friendliness is not an aim.
To make computer programs esoteric–for
others–makes them “private” (cf. Ratto,
2007: 79). To keep codes esoteric could
therefore also be a strategy to maintain
them “private” and prevent other
simulationists from using it, even if they
have access to it.

Moreover, the code in the code of the
group collective tends to be tailored for
the particular purposes of the group,
where all work on similar scientifi c
problems (cf. Mattila, 2006). To make
a code applicable to a wider variety of
problems requires expertise in several
research areas, beyond the focus and
competence of a small research group.
To give an example, one meteorological
simulationist spoke of a code he had
developed together with others:

This model that we have developed
ourselves…you discover after a while
that the model has its limitations and
if you want to move beyond those
limitations, then it has to become a
more advanced model system. And if
you are going to have a more advanced
model system, you have to keep it
alive and update it with new things
as soon as science progress, because
otherwise, you are shut out due to the
development. And fi nally you realize
that a small university group can’t take
care of updating all aspects of such a
model. And then it is pretty attractive to
collaborate with a large centre, where
there is a model developed… And then
you get regular updates to the model.
(cf. Mackenzie 2006: chap 4)

This account illustrates how a small
university group may have diffi culties to
develop their simulation code with the
novel insights that simulationists in their
fi eld are expected to include (otherwise
you are “shut out”).10 This problem can be
solved by becoming a user of a free code,
where others provide “regular updates”.
The quoted meteorologist decided to
switch to a public code and concluded
regarding the code he abandoned: ”It will
probably die as time goes by, when those
who originally developed it pass away in
one or the other way, or change model,
like we did.” Since the code in the code
of the group collective never leaves the
hands of its developers, it “dies” when
its developers/users abandons it and
perhaps move on to work with a different
code. Lindsay (2003: 50) remarks that the
disappearance of a technology from the
public does not necessarily end the life
of that technology, but this requires a
“public/private” distinction that does not
exist in the code of the group collective.

Mikaela Sundberg

Science Studies 1/2010

44

The Code developed all around

This is the type of collective which has
most similarities with what is elsewhere
referred to as free open source software.
Perhaps surprisingly, very few of the codes
in my material fi t into the ideal typical
construction. The reasons for this will be
discussed below. Because of their rarity,
I use work with the one suitable code
in astrophysics as a running example
to characterize the code developed all
around collective.

One of the explicit reasons for creating
this astrophysics code, which I fi ctively
refer to as the Neptune code, was the
aim to make everyone who worked with
the code deal with one single version
and constantly implement their new
developments there for the benefi t of
all. The aim to stick to one common, yet
constantly developed, version is part of
the reason why this code is maintained
at a central repository, located at a
particular server, rather than organized
as a distributed system that easily leads
to different versions at different places.
Versioning systems themselves both
refl ect and affect how computer program
development is organized, but it is
beyond the analytical focus of this paper
to explore this further.

User meetings, to which everyone in
the collective is welcome, are of great
importance for the code developed all
around. It is during these meetings that
the simulationists who work with the
code actually meet and discuss face-to-
face. In all the other collectives, at least
a fraction of the simulationists meet,
especially if the organization they work
for is situated at a particular location.
Because the code developed all around
has no formal organizational ties to
place, it is not evident where to hold
the user meetings. The location shifts.

However, the term user meeting does not
adequately refl ect what these meetings
are about in the sense that they are as
much, or even more, about discussing
developments and maintenance, rather
than discussing problems among users.
This also differs from the code spread all
around collective, where user meetings
are likely to be more user-oriented, also
including messages from developers
to users rather than discussions on
development. Why this is the case will
be explained in the section on the code
spread all around collective.

According to one of the founders, about
400 different researchers have “checked
out” the Neptune code, but there are
only about 25 researchers who have the
possibility to “check in” or “commit”
changes to the central repository. One
of the founders of the code occasionally
hands out new passwords in order to grant
users the benefi t of becoming developers.
This gate-keeping function maintains the
boundary between developers and users
and evokes Raymond’s (1999) “cathedral”-
model (with a hierarchical structure and a
master architect) of open source software.
The otherwise relative unstructured
and open nature of the Neptune code
development fi ts with the “bazaar”-
model. Notwithstanding, distinctions
between participants are made all the
time, for example, the presentation of the
last annual meeting (2008) distinguished
between “core-developers”, “regular
users” and “new users”.11 Different types
of engagement are also manifested in
how participants take part in discussions.
Whereas some engage in discussions on
maintenance and code structure, others
are only attentive (or present) when
discussions of scientifi c applications are
on the agenda.

However, who is a developer and who
is a user is not fi xed within the collective,

45

but changes over time (cf. Lindsay, 2003:
43ff.). Whether someone is recognized as
or identify him/herself as belonging to
one or the other category has nothing to
do with formal organizational affi liation
(membership). This differentiates the
code developed all around from the code
spread all around. Any user may become
a developer within the existing collective
by proposing and providing, for example,
additional equations to be implemented.
It is then up to the “core developers” in
general and the gate-keeper in particular
to accept or reject the suggestion.
There is therefore some coordination of
development by new contributors that
regular developers are free from and this,
in combination with the gate-keeping
function, illustrates a hierarchy.

Let me provide an example of how
users become developers, and how this
is unrelated to formal affi liation (as well
as rank). During one of the annual user
meetings, a master’s student proposed
some developments of the code. After
his presentation, the gate-keeper
commented on one of them by saying
that “I think this equation makes perfect
sense and should be implemented”. (Yet
he also showed his superior expertise
by noting that another suggestion was
actually “already in the code”). Perhaps
this (relative) openness is one of the
reasons behind a particular mechanism–
organizational element–used to control
the development of the Neptune code:
In order to monitor changes, the code
runs several auto-tests overnight and
developers are encouraged to do auto-
tests before they check-in changes. The
most important aspect in relation to the
construction of the type is that in this
sense, control focus on what is developed
rather than who does it.

The Code spread all around

There are those who sit and develop
models for the sake of model
development, to make it as good as
possible at describing the world, and
of course they sit and poke. Then
there are those of us who sit and use
those models, which those others
have made, to try to fi nd something
out. And it is hard to be both of these
two persons. Because it requires so
much to know how such a large and
encompassing model works. So either
you develop models or you use them.
And it depends on where you are.
I can’t sit here and think that I will
develop the [research institute] model.
Then I would have to be there, with the
group who’s doing it.

This account is from an ocean
simulationist who uses a free code and
works outside the research institute
where it is developed. It illustrates the
common view that simulationists are
either developers or users. The reason
given for this division is the amount of
knowledge it takes to know a code, but
also the difference in interests between
on the one hand, trying to make the code
as good a representation as possible and
tinker a lot with the code in order to do
so (as the developers at the mentioned
research institute do), and on the other
hand, use an application of a code to
tackle some research problem (as the cited
ocean simulationist does). Importantly,
this ocean simulationist connects the
different roles of developer and user to
where one works. This is a feature of the
code spread all around collective.

The code in the code spread all around
type of collective is available for non-
members to use. There are different
degrees of freedom to use however, ranging

Mikaela Sundberg

Science Studies 1/2010

46

from lack of restrictions and possibility to
do “what you want” to more restricted
utilization with attempts to control
use. There are sometimes requirements
on user registration, it is impossible to
download older versions, and/or refusals
to support users of older versions.
However, the code is primarily developed
within a particular organization. This is
presented at web pages by phrases such
as that the code is “developed at” or that
a particular department is the “home” of
the code. This type of code is also often
talked about as the code of the name of
the organization where it is developed,
even if the code itself has another
name. For example, MOM (the Modular
Ocean Model) is often referred to as “the
GFDL-model”, where GFDL stands for
Geophysical Fluid Dynamics Laboratory
(Princeton, US).

What makes simulationists enter an
open collective? Simulationists mention
several factors that they believe to be
important for making a free code popular
in terms of its amount of users. One of the
reasons for popularity that they note is the
capacity of codes to deal with a multitude
of problems, as opposed to being tailored
to particular purposes. Modules can
be “switched” on or off depending on
what type of problem one is interested
in dealing with. This creates a higher
number of potential users compared to
the code of the group. What seems more
important however is that codes are
“user friendly”. “User-friendly” refers to
qualities of the code such as being well-
programmed and well-documented in
articles, reports and/or user’s manuals.
Yet it also refers to qualities of the
collective because “user-friendly” implies
that there is available support such lists
of FAQs provided by the supplier of the
code, e-mail lists where everybody can
ask questions and developers or other

users reply, and user meetings. Several
user-friendly measures require resources
that are probably more available within a
formal organization than among a small
group of individual simulationists (code
of the group collective) or a dispersed
group (code developed all around
collective).

Interestingly, simulationists have not
mentioned the quality of output that
codes generate as a reason for using a free
code. Several interviews and informal
discussions among simulationists
indicate that the most popular codes, at
least in astrophysics, actually have the
worst reputation. The following quote
from someone who develops his own
astrophysics codes refers to users of a free
code developed at a particular institute (a
code spread all around collective): “[The
code] has been very, very popular and
people use it without having an idea how
it works, but it was set up so that it would
be easy to use by people who don’t really
know how to make their own codes…
and it [the code] is actually not so good.”
This type of talk about users and popular
codes is most characteristic among
developers/users of other codes. This
is not surprising considering that it is
particularly in the interest of developers
within code of the group collectives to
undermine the quality of free codes. Use
of free codes degrades the work and efforts
of simulationists in the code of the group
collectives to make a code for themselves,
as well as their skills in making the code
produce reasonable results (cf. Collins,
1985: 73f.).

Although simulationists emphasize the
importance of choosing the right code
for the problem under consideration,
most simulationists tend to stick with
the same code no matter what scientifi c
problem they address, in part because
learning how to handle and understand a

47

simulation code takes so much time. Yet
the presentation of the code of the group
collective discussed how simulationists
do not always enter a collective for good,
but sometimes leave. This is also the case
for code spread all around collectives. For
example, one ocean simulationist started
to use a free code but found errors in it
and decided to develop a new code:

One artifact was that for instance you
have fresh water with no salinity and
then you have Atlantic water with a
salinity of 35,5 PSU, which is the unit
for salinity, and when these two water
masses meet …you will get a mixture of
the water with an intermediate salinity,
not higher and you can not have
negative salinity, that is impossible. …
This is a type of error that can occur in
some models. So we saw that occurring
and that was the main reason for me to,
I could not use it. … We had to invent
something to avoid this. So that was
the start of my model.

Negative salinity in an ocean model is a
clear sign of something being wrong. In
the following, I discuss the responsibility
of users and developers in relation to
achieving acceptable results and fi xing
errors.12 Codes available over the internet
are supposed to be well-tested, but they
are without guarantees. There is always
a risk that simulations crash or generate
what is considered to be unreasonable
output. One way to offer users of free
code some kind of comfort is to provide
test problems with known solutions, for
example, at the webpage where the code
is found. These tests are used in order to
test the set-up of the code, but since the
code has already passed them before, one
can also see them as tests of the users.
“Once a technology is well established
and a culture exists about how to use a

machine, any failures are more likely to
be attributed to the user rather than to
the machine”. (Pinch, 1993: 37) However,
simulation codes are not that well-
established. It is therefore contested
where failures should be attributed.
Depending on what is to blame for
failures, it is the responsible developer
or the user who is expected to solve the
problem. One astrophysicist talked about
the use of free codes in relation to trust
in results: “If you haven’t worked in detail
with the code yourself, you have to be
sure that it is good craftwork (laughter),
that what you see is not happening
because the code is strange, but because
nature is strange (laughter).” If there is
something one considers erroneous,
the astrophysicist said that “you rely on
that someone else fi xes it, or that you
convince someone that it is actually
wrong, that it isn’t something that I have
done, but that it is actually something
they have done wrong in the code.” In
this case, “someone” is someone who
has developed the code and who has the
skill to deal with the errors. If developers
are not convinced that the code rather
than the user which is wrong, this type
of incident can be seen as representing
what is meant with users may “do stupid
things with your code”. In this case, the
“stupid things” might be to generate
strange results because of lack of skill to
handle the code properly.

This discussion highlights two
important differences between the
code of the group collective and the
code spread all around collective
regarding the division between users and
developers. First, there is the question of
knowledge transfer. What happens when
a code moves to a new setting? A crucial
difference between the code of the group
collective and the code spread all around
collective is that in the fi rst case, the unit

Mikaela Sundberg

Science Studies 1/2010

48

of knowledge is intact (cf. Collins, 1985). A
simulationist who has developed the code
moves with it. In the latter collective, it is
only a code which is diffused, without the
knowledge (the simulationists) that made
it work. Second, there is the question of
the division between developer and user.
Within the code of the group collective,
there is no boundary between users and
developers, within the code spread all
around, there are attempts to draw a
sharp boundary.

Defi ning Developers in the Code
Spread all Around Collective

In the code spread all around collectives,
what defi nes “development” is a question
of which changes end up in the offi cial
version of the code. This is a question
of membership. The offi cial version is
the version that users outside of the
formal organization can download and
it is one out of three types of versions
of codes in the code spread all around
collective. An unreleased version is a
version that is unavailable for users
outside the organization. New releases
are rare, as opposed to what seems to be
the case with software more generally
(Raymond, 1999). This is because codes
are thoroughly tested, but also because
developers take the opportunity to
approach new scientifi c problems before
releasing the new, hopefully better code,
to others. Finally, a modifi ed version
is a version that users outside the
organization have adapted (developed)
for their particular purposes and it is not
spread to others.

Different types of versions have different
status. Work with unreleased versions,
which eventually become offi cial, defi nes
what development is, at least from the
organizational developers’ (members’)
viewpoint. The organization controls the

offi cial version. One astrophysicist, who
worked with the development of a free
code at the centre which is referred to as
its “home”, talked about how users often
adapt the code to their own problems,
but that these changes are not on the
“same level” and can’t be referred to as
“developments”. The point here is not
what the “users” actually do, but the
fact that internal developers (members
of the formal organization) attempt to
control what counts as “development”
(as opposed to a “modifi cation” for own
purposes). Terminology is also somewhat
related to which part of the code you
develop. The following quote from an
ocean simulationist provides an example:

Some people do…some development
on things that are very targeted to their
project.
But to change the more fundamental
or experimenting with more
fundamental aspects of the code…
there are very few people who would
do that. Because things will very easily
break… [i]f you make changes to the
core numeric, it is a quite fi nely tuned,
everything depends on everything and
if you change one thing, the model
will most likely be unstable. ... So there
will be very few people that will ever
touch that part of the code. But then
it can be things how to introduce say
… radioactive tracers, you need to
include in the source terms maybe an
age tracer if you look at the radioactive
mechanism and some age mechanism
to trace it and then you fi ll this in.13

Dividing between core (”fundamental”)
and periphery (“some source terms”)
illustrates how some parts of the code
are considered more essential than
others, therefore distinguishing between
different types of development. It seems

49

like users outside the formal organization
are encouraged to use the code off-the-
shelf or, at most, make some adjustment.
As non-members, they are not expected
to develop (cf. Ahrne and Brunsson
2009; Woolgar 1991). For example, one
ocean simulationist who used a ready-
made code from a well-known research
institute said:”They [researchers at an
institute] are kind and develop, then
they don’t want you to poke into it”. This
account suggests that users should be
grateful for what is provided and avoid
making changes, partly in order to avoid
that something will “break”. A working
code is in the interest of developers as
well as the users.

Another aspect of development is
that development within the formal
organization is coordinated. At least
ideally, there are not several people
working independently on improving
the same thing. The code is “heading
somewhere”, as one ocean simulationist
expressed himself about the strategies
for developing the particular code he
worked with. Development work outside
the formal organization is generally
not mobilized in this endeavour, but
may turn out constructive if internal
developers (members) take advantage
of products from external, expert users
(cf. Lindsay, 2003: 38). This possibility is
sometimes recognized in, for example,
user’s guides where rules state how
bits and pieces of code should be
designed in order to be accepted, listed
for example as “[r]equirements that
contributed code must meet”.14 There
are also examples of research institutes
that invite researchers to sign temporary
contracts for working on developments
in a simulation code developed there (see
also Jankovic, 2004: 60). The development
of the Community Atmosphere Model
at the National Center for Atmospheric

Research (Boulder, US) is one such
example where temporary members get
the opportunity to develop something
that may end up inside the offi cial
version of the code, rather than simply
in a modifi ed version for personal usage.
There are also groups which are asked to
do developments. One meteorologist told
me about the development work that his
group did outside the boundaries of the
organization responsible for the climate
model that they used:

We started working on aerosol
parameterizations for climate models
ten years ago and back then [the
centre] didn’t really have big ambitions
in that area, they felt that it was too
early. So we were sort of far ahead of
them .… but then gradually things
have changed because gradually [the
centre] has become more ambitious in
terms of aerosols climate interactions
and have decided that we have to start
including a lot of detail of that stuff in
our model…. there are several groups
that have been involved in sort of an
informal working group … and we
have been involved in that, so we have
participated in some meetings but
they have decided that they want to
go ahead with implementing another
approach from another group … So
you know, they know what we are
doing, we are trying to show them
what we are doing and of course we try
to make them to use our work, but you
know it is up to them.

This quote illustrates how different
groups develop similar new modules
for the same free code. This leads to
competition, especially in meteorology
where it is prestigious to have contributed
to the development of well-known
codes, preferably to operational weather

Mikaela Sundberg

Science Studies 1/2010

50

forecast models. As one meteorologist
wrote in her thesis, “possibly the ultimate
hope of every atmospheric modeller is to
make a contribution to an operational
NWP model” (Zagar, 2004: 38). Although
the close relationship between basic,
meteorological research and weather
forecasting (applied meteorology)
does not have a correspondance in
astrophysics, it is likely that all code
developers wish that their development
efforts are recognized. To create a new
code collective is another way to enable
developing users in codes spread all
around collectives to become recognized
as developers. It is common in all three
disciplines that well-known and widely
spread codes contribute with bits and
pieces to other codes, but they also
have off-springs (see also Edwards,
2001). Slightly modifi ed codes are given
new names and new codes as well as
collectives are born (cf. Sundberg, 2009:
173). Re-naming codes is an important
part of this identity transformation.15

The Code of the Centre

The code of the centre collective has
a formal organizational boundary,
both in terms of development and use.
One meteorologist emphasized that “a
model always needs a place”; a place
where people know it and work with it
continuously. He expressed his skepticism
by speaking of it as “risky” to download
a code from somewhere, modify it a bit
for own purposes, and then use it. He
maintained that new modifi ed versions
of the code that non-members create
are not tested properly, because “users”
utilize a code like a “black-box”, whereas
“developers care about the quality of the
model” (cf. Woolgar, 1991). This is not
only an example of stereotypical view
on users and developers, but also of how

the code of the centre collective keeps its
code for its members.

The code of the centre collective is a part
of a formal organization. In order to work
with the code–to enter the collective–one
has to work at the particular department
or research institute where part of the
work is explicitly devoted to the code.16 If
one quits working there, one has to quit
working with the code. Some codes that
are offi cially free have such restricted
usage that they almost fi t better into the
category of code of the centre collective
than the code spread all around. For
example, the licence agreement for
“software” developed at the Max Planck
Institute for Meteorology in Hamburg,
Germany provides an example.17 Although
the codes are free, there are many elements
to create order imposed on the users
outside the formal organization. There
are rules and hierarchies manifested in
that error fi xes and modifi cations must
be communicated to the coordinator of
model development. There is monitoring
in the sense that the title and authors
of any publication with results from the
“software” shall be sent to the coordinator
of model development no later than the
publication is submitted to a scientifi c
journal. There are sanctions because
the rights under the licence agreement
terminate automatically without notice
if users fail to comply with any terms of
the licence. At the same time, software is
provided without warranty of any kind.

Being a part of a code of the centre
collective is to be a member of an
organization, and your affi liation is
with the organization, not with a code.
Research staff in these organizations
may therefore be forced to change code
due to decisions made higher up in the
organizational hierarchy. I have been
told about several such occasions. Yet it
is not the code which is the basis for the

51

organization, but the other way round.
Important research centres develop new
codes, or, what is more common and
import, adjust old codes and give them
new names. One meteorologist said:
”Each institute or group wants to call it
something. And then for example climate
models, there is the Hadley model,
ECHAM, some Japanese models… but if
you look carefully at those models they
contain elements which are identical.”18
It seems like prestigious research centres
want to have their own code for numerical
simulations, whether they are made from
scratch or not. This is very much the
case with climate models, which often
consist of a combination (coupling) of
existing models of the atmosphere and
the ocean, and sometimes also land and
ice models.19 This combination becomes
a new system. The last quote also implies
the national character of research that is
highly evident within climate modelling.
Climate models are sometimes referred
to as the model(s) of a particular country,
e.g. the German model, if not their
organizational affi liation, e.g. Max Planck
institute model. This indicates how
climate modelling has become a question
of national prestige (cf. Nolin, 1999). For
example, at a seminar, the novel effort
to develop a European Earth system
model was presented as a project with
“mostly small European countries that
do not have their own climate model”.
This is another example of the national
character of climate modelling.

Although the present article focuses
on the distribution and sharing of codes,
it is interesting to note how some code of
the centre collectives provide accessible
output data. This is especially the case
with the climate modelling work that
underlies the reports by IPCCs Working
Group I. Analysis of aspects of these
huge data sets, requiring several months

of supercomputer cluster calculations,
have become a common modelling-
based way to do research, far outside
the code of the centre collectives that
produced the data. This means that the
analyst is not required to ever touch the
simulation codes that generated output
data. More generally, from the point of
view of political interest and available
funding, climate modelling takes place
in a very different context compared to
astrophysics (but perhaps not compared
to space research). The code of the centre
dominates climate modelling, but does
not exist in astrophysics. In fact, several
previous studies of climate modelling
have been based on studies of centres,
and thereby implicitly of code of the
centre collectives (e.g. Shackley, 1999, see
also Edwards, 2000). Thus, the code of
the centre collective is not a superfl uous
category with respect to simulation
codes in general, but the type is less
documented in the present material.

Concluding Remarks

This article has presented an ideal
typology of simulation code collectives
in science and showed the usefulness of
an organizational approach in discussing
software technology development,
distribution, and use, without forgetting
the benefi ts of a science and technology
studies informed perspective. The
typology offers a systematic description
of different types of code collaborations
that exist in astrophysics, meteorology,
and oceanography–as opposed to
single case studies–and it emphasizes
similarities between the research
fi elds rather than their differences. To
highlight the organizational aspects,
we can summarize how different
types of collectives relate to different
organizational elements.

Mikaela Sundberg

Science Studies 1/2010

52

The code of the group is excluded
from the table since it does not exhibit
any organizational element. In this sense
it as a genuine network, in the original
meaning of the concept (Ahrne and
Brunsson, 2009). In the code developed
all around collective, organizational
elements have been added to retain some
control of the offi cial version, while still
having the possibility to offer any user
the benefi t of becoming a developer.
This is why I suggest that a password
permitting changes is a reward (positive
sanction) rather than a manifestation
of membership. Of course, one can also
discuss grades of membership, but that
conceptual discussion is beyond the
scope of the present article.

The code of the group and the code
spread all around collectives fi t well with
what is going on in all three disciplines and
it is those types, as well as their differences,
that I have focused mostly on. The code
developed all around and the code of the
centre fi t less well. The code in the code
developed all around collective is closest

to free open source software and even if
the latter is becoming more common in
software development more generally
(see e.g. Fuller, 2003; Campbell-Kelly,
2003), it is rare for simulation codes in
this study. Why is this so? One suggestion
for the rarity is the lack of control over
the development this form of collective
essentially exhibits, in combination
with what is at stake in science. As
technology, simulation codes have to
work (perform calculations until the
end), but these results are also supposed
to deliver results that simulationists
believe in (cf. Sundberg, 2008). Because
of the uncertainties involved in using
simulation codes, more users do not
necessarily improve the reputation of the
code, and therefore not the reputation
of the developers of the code either. To
offer output data, as code of the centre
collectives do, is a way of avoiding the
trouble of having what some developers
view as unskilled users of simulation
codes (while probably generating other
types of problem instead). The ability to

Collective/
Organizational
element

Code developed all
around

Code spread all
around

Code of the centre

Membership Developer User, developer

Hierarchy Negotiated
distinction between
main developers and
users

Distinction
between
developers and
users

Management
decisions

Rules Instructions Instructions,
contracts

Decisions

Monitoring (Automatic) Direct (of
developers)

Management

Sanctions (+/-) + Password to make
changes
- Withdrawn
password

+ User –made
development
incorporated into
offi cial version
- No user support

+ Promotion, more
responsibility
- Degradation

Table 2 Code collectives and organizational elements

53

form a code of the centre type collective is
restricted by the amount of resources that
are invested in different research fi elds
and their simulation code development
(cf. Edwards, 2001: 64). For the sake
of comparison, it is a limitation of the
typology that it neglects the different
research contexts and funding climates
that e.g. cosmology simulations and
climate model simulations take place
within. More generally, how resources
for code development (permanent
positions, support from engineers and
programmers etc.) and use (access to
supercomputers etc.) are acquired are
important sociological questions for
further research.

There are nevertheless several central
topics for which the code collective
typology itself provides a good starting
point. For example, what does the
dynamics of code collectives look like in
terms of their development trajectories?
Interesting topics are also the distribution
and development trends of different types
of code collectives in a given discipline
or research fi eld. This is also a part of
understanding software development in
general. Would shifts in the distribution
of different types of code collectives
imply shifts in the role simulation codes
play in scientifi c practice? It is quite
remarkable how many simulationists still
work with their own codes, considering
all free codes, the time it takes to write
functioning codes, and the little credit
that is given for this development.
Because of the risks with supplying free
code it is also interesting to investigate
why there is work put into making
free codes. The more epistemological
issues are deliberatively absent from the
paper, but this is only the consequence
of an attempt to provide a distinctively
sociological analysis of simulation code
collaboration and work in general, which

seems to be backlogging the growing
number of philosophical discussions on
this form of scientifi c practice. However,
the questions raised above are but some
of the important ones for exploring
both how numerical simulations are
embedded and affect the different
epistemic cultures of astrophysics,
oceanography, and meteorology as well
as how the role of simulation codes
develop in science more generally.

Acknowledgments

The author wishes to thank Göran
Ahrne, Boel Berner, Fredrik Movitz, Alma
Persson, Ebba Sjögren, Jan Tullberg,
Sven Widmalm, and two anonymous
reviewers for valuable recommendations
and comments on earlier versions of this
article. The author also acknowledges
the generous fi nancial support from the
Swedish Science Council under contract
2006-1296 and contract 2007-1627.

Notes

1 Simulation codes are based on
mathematical models that use some
numerical time-stepping procedure
to obtain the model’s behavior over
time. Within the physics-based
sciences, these simulation codes are
often built on the basis of constraint-
based equational models derived from
physical law. Algorithms formally
specify how the models behave and
are simulated, but model execution
differs from model design. There may
be different computer codes based
on the same mathematical model. In
journal articles based on numerical
simulations, the mathematical
model is generally described, but less
information is provided regarding the

Mikaela Sundberg

Science Studies 1/2010

54

code. The scientists who work with
simulation codes are often looser
in their terminology when they talk
about their work with numerical
simulations. Astrophysicists generally
speak of “codes”, but sometimes
of “models” when they refer to
how they set up their experiment.
Meteorologists and oceanographers
talk about “models”, even if they
obviously refer to a version of a
computer program. I do not analyze
the different terminologies further
and generally refer to “code”, as it
refl ects how numerical simulations
rely on computers.

2 Some suggest that building
simulation codes and their underlying
models is also a process of knowledge
creation (see e.g. Winsberg, 1999), but
it is still their output that draws most
attention as knowledge producing.

3 There is also much discussion on the
values and political implications of the
so-called open source movement (e.g.
Feller et al., 2005; McInerney, 2009).
Within that context, the distinction
between free software and open
source software are important, see
GNU (http://www.gnu.org/) and
Open Source Initiative (http://www.
opensource.org/).

4 See Oudshoorn and Pinch (2007)
for a thorough review of founding
approaches in STS as well as recent
developments in user-technology
relationships.

5 Simulation codes connect people
in different ways. Through
transformations of theoretical models
into mathematical models into
computer code their multiple forms
bring diverse practices together.
Theoreticians provide the conceptual
basis and develop equations, applied
mathematicians work on the numerical

approximations and methods,
programmers make the codes more
effi cient, and experimentalists
provide data and knowledge about
empirical relationships required to
set parameters in the code. In relation
to these groups, simulationists are
generally users who implement and
adjust the work of theoreticians, set-
up and run codes, and analyse their
output. It is this group of practitioners–
the simulationists–who concretely
work with simulation codes to produce
scientifi c knowledge and it is therefore
this group that the present article
focuses on. It does not discuss the
contribution of more theoretically or
empirically oriented research workers
who never touch the numerical model
in the form of a computer program nor
how distinctions between groups are
made.

6 It does not imply identifi cation with
an organization.

7 The network concept in actor-
network theory obviously diverges
signifi cantly from the traditional
sociological understanding of the
concept (see e.g. Latour, 2005). This is
not discussed in the present article.

8 These include one meteorologist
in Norway, one meteorologist
in the Netherlands, four ocean
simulationists in Norway, and three
astrophysicists in Denmark and they
have been selected as informants
through snowball sampling. The
remaining interviewees worked in
Sweden, but several of the research
scientists did their doctoral work
elsewhere (e.g. Germany, Finland,
the Netherlands, France). 12 of
the interviews were conducted in
English, the rest in Swedish. Quotes
from the latter interviews have been
translated.

55

9 Most of these gatherings were held at
or (co-)organized by the Department
of Meteorology at Stockholm
University (which also hosts physical
oceanography), the Department of
Astronomy at Stockholm University,
Nordic Institute for Theoretical
Physics, and the Department of
Physics and Astronomy at Uppsala
University. Researchers from abroad
were often present.

10 One reason for these diffi culties may
be lack of resources and complaints
about lack of resources for code
development is are commonly heard
from all simulationists who work with
development.

11 There were only four and eight
participants during the fi rst two
meetings, according to the original
developer. I attended the third and
fourth meeting. The number of
participants had increased to about
twenty. Several of them characterized
themselves as new users.

12 For analysis of how to determine
whether to conceive of output as
reasonable or not, see Sundberg
(2008).

13 Ocean (and atmospheric)
simulationists have a particular and
somewhat confusing way of referring
to the “dynamics” and the “physics”
of codes. The “core” of dynamical
equations is referred to as “dynamics”
and other process descriptions (e.g.
turbulence, cloud convection) as
“physics”.

14 See http://www.gfdl.noaa.gov/~fms/
pubrel/j/mom4/doc/mom4_manual.
html.

15 Original developers are still credited.
We should distinguish between new
conceptual developments, for example,
the analytical formulation of a process
description and new and/or different

ways of coding this formulation. The
present article concerns code changes
rather than model changes. See also
footnote 1.

16 Weather forecasting takes place within
national meteorological offi ces, which
are state agencies. See Fine (2007) for
an analysis of the work at weather
service offi ces in the US. In Europe,
several weather bureaus cooperate to
develop and use particular weather
forecast models. These multi-
institutional collaborations are better
characterized as meta-organizations,
with organizations rather than
individuals as members (cf. Ahrne and
Brunsson, 2008).

17 See http://www.mpimet.mpg.de/
en/w issenschaft/modelle/model-
distribution/procedure.html.

18 The Hadley model refers to a
climate model developed by the
Meteorological Offi ce Hadley Centre,
UK and ECHAM to a climate model
developed by Max-Planck-Institute for
Meteorology and the Meteorological
Institute of Hamburg University.

19 See Edwards (2000) for the history
of atmospheric general circulation
modelling and an overview of how
different numerical models owe
inspiration and pieces of code from
others. See also Jankovic (2004).

References

Ahrne, G. & N. Brunsson. (2008) Meta-
organizations (Cheltenham, UK,
Northampton, MA: Edward Elgar).

Ahrne, G. & N. Brunsson. (2009)
‘Organization outside organizations.
The signifi cance of partial organization’.
Submitted.

Bezroukov, N. (1999) ‘Open Source
Software Development as a Special
Type of Academic Research (Critique

Mikaela Sundberg

Science Studies 1/2010

56

of Vulgar Raymondism)’, First Monday
4(10) URL: http://fi rstmonday.org/
issues/issue4_10/bezroukov/inidex.
html

Boyatzis, R. E. (1998) Transforming
Qualitative Information: Thematic
Analysis and Code Development
(Thousands Oaks/London / New
Delhi: SAGE Publications).

Campbell-Kelly, M. (2003) From Airline
Reservations to Sonic the Hedgehog:
A History of the Software Industry
(Cambridge, MA: MIT Press).

Collins, H. M. (1985) Changing Order.
Replication and Induction in Scientifi c
Practice (London: SAGE Publications).

Dowling, D. (1999) ‘Experimenting on
Theories’, Science in Context 12 (2):
261–273.

Fine, G. A. (2007) Authors of the Storm.
Meteorologists and the Culture of
Prediction (Chicago and London:
University of Chicago Press).

Edwards, P.N. (2000) ‘A Brief History of
Atmospheric General Circulation
Modelling’, in Randall, D. A. (ed)
General Circulation Development, Past
Present and Future: The Proceedings
of a Symposium in Honour of Akio
Arakawa (New York: Academic Press).

Edwards, P.N. (2001) ‘Representing
the Global Atmosphere: Computer
Models, Data, and Knowledge about
Climate Change’ in C.A. Miller and
P.N. Edwards (eds) Changing the
Atmosphere: Expert Knowledge
and Environmental Governance.
(Cambridge, Massachusetts: The MIT
Press): 31-66.

Feller, J., B. Fitzgerald, S.A. Hissam & K.R.
Lakhani. (2005) Perspectives on Free
Open Source Software (Cambridge,
MA: MIT Press).

Fuller, M. (2003) Behind the Blip: Essays
on the Culture of Software (New York:
Autonomedia).

GNU http://www.gnu.org/ 02/13/2009

Jankovic, V. (2004) ‘Science Migrations:
Mesoscale Weather Prediction from
Belgrade to Washington, 1970-2000’,
Social Studies of Science, 34 (1): 45-75.

Kennefi ck, D. (2000) ‘Star Crushing:
Theoretical Practice and the
Theoreticians’ Regress’, Social Studies
of Science, 30 (1): 5-40.

Knorr Cetina, K. (1995) ‘How
Superorganisms Change: Consensus
Formation and the Social Ontology
of High-Energy Physics Experiments’,
Social Studies of Science, 25 (1): 119-
147

Lahsen, M. (2005) ‘Seductive Simulations?
Uncertainty Distribution around
Climate Models’, Social Studies of
Science 35(6): 895-922.

Latour, B. (2005) Reassembling the Social.
An introduction to Actor-Network-
Theory (Oxford: Clarendon).

Lindsay, C. (2003) ‘From within the
Shadows: Users as Designers,
Producers, Marketers, Distributors,
and Technical Support’, in N.
Oudshoorn and T. Pinch (eds.) How
Users Matter: The Co-Construction of
Users and Technologies (Cambridge,
MA: MIT Press): 29-50.

Mackenzie, A. (2006) Cutting Code.
Software and Sociality (Peter Lang:
New York).

Mattila, E. (2006) Questions to Artifi cial
Nature: A Philosophical Study of
Interdisciplinary Models and their
Functions in Scientifi c Practice.
Doctoral Dissertation, University of
Helsinki.

McInerney, P.B. (2009) ‘Technology
Movements and the Politics of Free
Open Source Software’, Science,
Technology, and Human Values 32 (2):
206-233.

Merz, M. (1999) ‘Multiplex and Unfolding:
Computer Simulation in Particle
Physics’, Science in Context, 12 (2):
293–316.

57

Mulkay, M. and Gilbert, N. (1982)
‘Accounting for Error: How Scientists
Construct their Social World when
they Account for Correct and Incorrect
Belief’, Sociology 16: 165-183.

Nolin, J. (1999) ‘Global Policy and National
Research: The International Shaping
of Climate Research in four European
Union Countries’, Minerva 37: 125–40.

Open Source Initiative http://www.
opensource.org/ 02/13/ 2009

Oudshoorn, N. & Pinch, T. (2007) ‘User-
Technology Relationships: Some
Recent Developments’, in Hackett,
E. J, Amsterdamska, O., Lynch, M.,
Wajcman, J. (eds.) The Handbook of
Science and Technology Studies (MIT
Press. 3rd edition): 541-566.

Pinch, T. (1993) ‘Testing, One, Two,
Three-Testing: Towards a Sociology
of Testing’, Science, Technology, and
Human Values 18 (1): 25-41.

Ratto, M. (2007) ‘A Practice-Based Model
of Access for Science: Linux Kernel
Development and Shared Digital
Resources’, Science Studies, 20 (1): 73-
105.

Raymond, E. (1999) The Cathedral and
the Bazaar. Musings on Linux and Open
Source by an Accidental Revolutionary
(Beijing: O’Reilly).

Stewart, D. (2005) ‘Social Status in an
Open-Source Community’, American
Sociological Review 70 (5): 823-842.

Sundberg, M. (2005) Making Meteorology.
Social Relations and Scientifi c Practice.
Stockholm: Stockholm University
Studies in Sociology, New Series 25.

Sundberg, M. (2008) ‘Socialization
into Numerical Simulations: The
Perspectives of Simulationists in
Astrophysics and Oceanography’
Department of Sociology Working
Paper Series 2008:14.

Sundberg, M. (2009) ‘The Everyday
World of Simulation Modelling: The
Development of Parameterizations

in Meteorology’, Science, Technology,
and Human Values 32 (2): 162-181.

Von Krogh, G., S. Spaeth, and K.R.
Lakhani (2003) ‘Community, Joining,
and Specialization in Open Source
Software Innovation: A case study’,
Research Policy 32: 1217-1241.

Weber, M. ([1904] 1949) ‘”Objectivity” in
Social Science and Social Policy’, The
Methodology of the Social Sciences
(New York. The Free Press): 49-112.

Winsberg, E. (1999) ‘Sanctioning Models:
The Epistemology of Models’, Science
in Context 12 (2): 275–292.

Winsberg, E. (2003) ‘Simulated
Experiments: Methodology for a
Virtual World’, Philosophy of Science
70: 105-125.

Woolgar, S. (1991) ‘Confi guring the User:
The Case of Usability Trials’, in J. Law
(ed) A Sociology of Monsters: Essays
on Power, Technology and Domination
(London: Routledge): 58-100.

Zagar, N. (2004) Dynamical Aspects of
Atmospheric Data Assimilation in
the Tropics. Doctoral dissertation,
Department of Meteorology,
Stockholm University, Stockholm.

Cited sources

http://www.mpimet.mpg.de/en/
wissenschaft/modelle/model-
distribution/procedure.html
(07/10/2008)
http://www.gfdl.noaa.gov/~fms/
pubrel/j/mom4/doc/mom4_manual.
html (09/18/2007)

Mikaela Sundberg
Department of Sociology
Stockholm University
Universitetsvägen 10B
S-106 91 Stockholm
Sweden
mikaela.sundberg@sociology.su.se

Mikaela Sundberg

