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A Practice-Based Model of Access for 
Science: 

Linux Kernel Development and Shared 
Digital Resources 

Matt Ratto

In this paper I argue that analyses of access to the contexts and work of ‘e-science’ 
and scientifi c ‘cyberinfrastructures’ are hindered by models that assume fi xed roles for 
contributors and users and undervalue the joint ‘reworking’ of scientifi c data that is one 
of the central strengths of such approaches. Using a community of Free/Libre Open 
Source software (FLOSS) developers as a complementary case, I develop an alternative 
practice-based model of access that focuses on the particular sets of social and 
technical knowledges that allow individuals to work together to develop and maintain 
shared resources. Importantly, this model of access puts the practices of ‘reworking’ 
as central rather than peripheral to human activity. Access within this framework is 
characterized as the ability to shift between individual and joint, mediated work, and 
to understand and manipulate the multiple representations of  shared objects such 
shifts require.  

Keywords: open access, data sharing, distributed work, Linux, Free/open source 
software

Though most scholars would agree that 
arguments about the internet as es-
sentially socially liberating have been 
grossly over-stated, digital networks 
have encouraged new possibilities for 
the coordination and consolidation of 
shared work. These possibilities are in-
creasingly being adopted in scientifi c 
and scholarly fi elds, with many disci-
plines creating new digital infrastruc-
tures to facilitate the distribution, shar-
ing, and archiving of scientifi c data and 

other forms of scholarly information. 
More than just electronic storage facili-
ties, these ‘e-science’ networks and da-
tabases are often predicated on ‘quid-
pro-quo’ relationships; since access to 
the stored information requires partici-
pation, scholars and scientists must give 
information to get information. Exam-
ples of scientifi c work that involves the 
use of digital objects are myriad but in-
clude shared data archives of brain im-
agery (e.g. Beaulieu, 2004) and biodiver-
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sity databases (e.g. Bowker, 2000; Casey, 
2003). Equally, many social science and 
humanities archives and infrastruc-
tures are being created that rely on dig-
ital resources, including shared corpora 
for linguistic analysis (Fry, 2003), the 
creation of community libraries (Wright 
et al., 2002) and other initiatives such as 
those being developed under the aus-
pices of new e-social science humani-
ties funding, such as the UK’s ESCR Na-
tional Centre for e-Social Science; the 
Netherlands’ Virtual Knowledge Studio, 
and the US’ Commission on Cyberinfra-
structure for the Humanities and Social 
Sciences. An important marker in the 
shift towards more distributed forms of 
science and scholarship was the crea-
tion in 2003 of the Offi ce of Cyberinfra-
structure by the US National Science 
Foundation.

This ongoing move to more distrib-
uted forms of scientifi c and scholarly 
work has raised a number of questions 
by practitioners, funding agencies, in-
frastructure developers, and scholars, 
who all share an interest in creating 
systems of knowledge production along 
more open, collaborative, and decen-
tralized lines. These questions include 
how to make these infrastructures as 
open as possible without sacrifi cing the 
quality of the information they contain, 
how to support the diversity of research 
needs and also develop tools for spe-
cifi c requirements, and how to support 
traditional research while simultane-
ously helping scientists and scholars 
pose novel questions and new forms of 
enquiry. Needless to say, these issues 
all involve, to a greater or lesser degree, 
negotiations of access to the spaces and 
the objects of distributed work. 

In this paper I construct a practice-
based model of access that explores the 
specifi c means by which individuals ne-
gotiate the complex social and technical 

landscape involved in digitally-mediat-
ed work, claiming that such a model can 
help scientists, scholars, and infrastruc-
ture designers create social and techni-
cal systems that foster inclusion, man-
age issues of quality, and maintain the 
specifi city of the scholarly or scientifi c 
objects particular to their discipline. 
While previous models of access to sci-
entifi c data such as those summarized 
below can adequately address questions 
of access within bounded and highly 
structured institutional frameworks, 
new distributed scientifi c practices that 
rely on the Internet and digital data re-
semble much more the messy, often dis-
organized work involved in free/libre/
open source (FLOSS) software. This 
being the case, a study of how FLOSS de-
velopers manage questions of access can 
help us understand the questions raised 
by highly distributed and digitally-me-
diated scholarship.  

While the argument has often been 
made that FLOSS development in some 
ways resembles Mertonian science (e.g. 
Kelty, 2001), I argue instead that science 
and scholarship, in its moves towards 
increasingly distributed formations, in 
some ways resembles FLOSS. Therefore, 
I examine the shared work practices of 
a group of developers responsible for the 
maintenance and ongoing development 
of a key element of the Linux operating 
system.1 Linux is considered one of the 
primary successes of the FLOSS software 
engineering method, characterized by a 
distributed form of development, carried 
out mostly on the Internet, by a group of 
geographically distributed volunteers. A 
key element in the development of Linux 
is the Linux Kernel Mailing List (LKML), 
a shared space/place where contributors 
to Linux can exchange source code and 
debate issues related to coding practice, 
the organizational structure of Linux 
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development, as well as possible future 
directions for the community. 

The paper consists of the following 
sections; in section I, I provide an exam-
ple of some current defi nitions of access 
and, through a brief discussion of Linux 
development, demonstrate how they are 
inadequate for describing how partici-
pation within the Linux community, and 
correspondingly, distributed scholar-
ship and science, is mediated. In section 
II, I lay out a practice-based model of ac-
cess through an extended discussion of 
the shifts in practices and objects that 
characterize the ongoing work of Linux 
development. In section III I visually 
represent the ideas of reworking articu-
lated in section II, using the resultant 
chart to detail how successful access in 
Linux development progresses. Finally, 
in section IV, I refl ect on how this notion 
of access can help practitioners, funding 
agencies, infrastructure designers, and 
scholars better understand the specifi c 
needs of scientists and scholars working 
in distributed contexts, concluding with 
some fi nal insights about the relation-
ship between digitality and the objects 
and representations of science.   

Data and methods

The following analysis of access in 
Linux kernel development results from 
a fi ve year qualitative ethnographic and 
historiographic study on Linux devel-
opment conducted primarily between 
1998-2003. The data sources used in that 
study included the web pages of Linux 
developers, online and offl ine journal-
ism about Linux development, analyses 
of Linux source code itself, and obser-
vation and participation on email lists 
related to Linux development. These are 
reported in more depth in Ratto (2003; 
2005a; 2005b). The primary source used 
in the present article is the Linux Kernel 

Mailing List (LKML) archive hosted at 
Indiana University.2 This online archive 
contains emails from as far back as 1996, 
and, as of May 1, 2003 contained over 1.6 
gigabytes of individual entries. In 2002-
2003 with the permission of the archive 
personnel I copied approximately 1 GB 
of this material to a local Unix-based 
computer in order to carry out more 
complex searches than were possible 
with the online system. The major-
ity of quotes reproduced in the sections 
below are a result of searches on a par-
tial sample of the overall LKML archive 
using the grep search tool. The key 
search terms were generated through 
a grounded theory analysis (Glaser and 
Strauss, 1967; Glaser, 1992; Strauss and 
Corbin, 1990; 1997) which followed the 
following overlapping phases; fi rst, on-
going observation and conversations 
about development activity; second, 
collection and reading of relevant mate-
rials; third, an iterative process of cod-
ing and memoing gathered materials; 
fourth, the development of categories 
and properties that help explain aspects 
of development; fi fth, an emergent proc-
ess of writing and theory building that 
describes relations between these cat-
egories and properties. The quotes used 
in section IV of this paper come from a 
follow-up study on the relationship be-
tween FLOSS and scientifi c practice car-
ried out in 2006-2007. 

I. Defi ning access, openness, 
and Gnu/Linux

The role of ‘open access’ in current sci-
ence policy (e.g. Houghton et al., 2003; 
NIH, 2003; Goldenberg-Hart, 2004) dem-
onstrates the importance of conceptual-
izing access as an active, ongoing prac-
tice. This was highlighted in an article 
by the OECD Follow-up Group on Issues 
of Access to Publicly Funded Research 
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Data (Arzberger et al., 2004). In this ar-
ticle the authors critiqued the recent 
focus on increasing access to the output 
of scientifi c work, (i.e. scientifi c publica-
tions), rather than addressing what they 
saw as a more serious problem: the lack 
of access to the raw material of scientifi c 
work, namely research data. Access to 
research data often requires a ‘quid-pro-
quo’ between research scientists, in that 
it is not merely about passive access to 
static material, but is predicated instead 
on a relationship to shared material and 
the common construction of a joint re-
source. Understanding this relationship 
as requiring an ongoing process of ne-
gotiation within a system of join, expert 
work requires rethinking traditional 
defi nitions of access. 

Access
Access, in relationship to issues involv-
ing the use of technologies or scientifi c 
knowledge, is typically conceptualized 
as the ability or right to obtain, make 
use of, or take advantage of something.3 
This concept of access is typically ana-
lyzed by mapping a set of properties in 
order to characterize relationships be-
tween providers and consumers of data 
or services. For example, in their anal-
ysis of the health care industry, Pen-
chansky and Thomas (1981) focused on 
‘the 5 A’s’,  affordability, availability, ac-
cessibility, accommodation, and accept-
ability. Other analyses of access have 
focused on properties such as trans-
parency and information management, 
(e.g. Schenkelaars and Ahmad, 2004)  
and/or the need for incentives and re-
ward structures to overcome resistance. 
(e.g. Houghton et al., 2003). 

Similarly, in the article by the OECD 
Follow-up Group (Arzberger et al., 2004) 
mentioned above, the researchers divid-
ed issues of access into fi ve domains; In-

stitutional & Managerial, Legal & Policy, 
Financial & Budgetary, Cultural & Be-
havioral, and Technological, all linked 
in reciprocal relationships. (Arzberger 
et al., 2004: 144.) An important addition 
to previous descriptions of access, this 
model includes cultural and behavio-
ral factors as an essential category of 
properties to address when consider-
ing questions related to access, rather 
than relegating it to a subordinate po-
sition. Under this category, the OECD 
group placed properties related to trust 
in research quality, codes of conduct 
based in professionalism, and how fl ex-
ible members of a research community 
might be in approaching permutations 
of their rules and procedures. Another 
important aspect of this model is that it 
demonstrates the connected nature of 
the multiple domains of access, e.g. that 
fi nancial issues are connected to legal 
context which is in turn infl uenced by 
technological considerations. 

Such mappings of access are demon-
strably useful as one way to evaluate 
and/or problematize current systems 
of access to important social resources. 
By directing focus towards the vari-
ous aspects of access, these categories 
can provide a framework for examining 
what kinds of restrictions may mani-
fest themselves, and what domains 
(legal, economic, cultural, etc.) may 
be involved. However, this framework 
requires both a clear defi nition of the 
boundaries between the various aspects 
(e.g. what counts as ‘institutional and 
managerial’ and what can be considered 
‘legal and policy’), as well as static mo-
ments in which access can be analyzed. 
Thus while it might work very well for 
highly structured and bounded institu-
tional contexts where both responsibili-
ties and contexts of access are clear and 
can be described, this framework is not 
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as useful for less structured contexts, 
such as those of distributed science and 
FLOSS work. Further, this model does 
not differentiate between the work that 
is shared – research data is considered 
to be the same whatever particular con-
text of work it relates to, be it anthropol-
ogy, biology, geology, or computer sci-
ence. This is particularly problematic 
for cyberinfrastructure and e-science, 
given the ways in which such infrastruc-
tures are expected to move beyond the 
passive database to become contexts for 
shared work in which scientifi c objects 
are actively transformed, reworked, 
and repurposed. What previous mod-
els of access do not adequately address 
is the role scientifi c objects themselves 
play in how systems can and should be 
designed. 

Given the complexity of the intercon-
necting issues, a more dynamic and 
practice-based model of access will bet-
ter serve those interested in diagnosing 
and designing shared digital resources. 
FLOSS development and the practices 
of Linux Kernel developers in particu-
lar, provide a rich resource for exploring 
questions of access. 

Gnu/Linux
Gnu/Linux is an operating system, like 
Microsoft Windows or Apple’s Mac OS 
that provides services (such as inter-
faces, fi le systems, and application envi-
ronments) to personal computer users. 
Gnu/Linux is currently running on ap-
proximately 29 – 35 % of all computer 
servers, as well as on a much smaller per-
centage of desktop computers. Some es-
timates put the current number of total 
Gnu/Linux users at around 18 million.4 

Unlike Windows or MacOS, Gnu/
Linux has been mostly developed by a 
geographically distributed group of vol-
unteer developers, who have used the 

Internet and a license called the General 
Public License, or  GPL, to maintain ac-
cess to the results of their work. ‘Linux’ 
although often used as a short-hand for 
the total operating system, more prop-
erly names the effort to create what is 
probably the most complex part of this 
system, its kernel.5, 6 The originator of 
Linux, Linus Torvalds, along with a 
loose and changing group of developers 
has maintained ongoing development 
since 1991, making it one of the longest 
projects of this type. The result of this 
project is a set of programs, contain-
ing more than 15 million lines of com-
puter code.7 Thus, Linux demonstrates 
that ‘open source’ efforts in develop-
ing large-scale software projects can 
be successful, despite traditional theo-
ries about software development. (e.g. 
Brooks, 1975.)  

While early journalism about Linux 
often reported its success as a direct re-
sult of the abilities of the instigator of 
the project, Linus Torvalds, academic 
work has tended to stress a number of 
additional pre-conditions such as an ex-
isting group of computer experts, knowl-
edgeable about the Unix software envi-
ronment and resistant to efforts by Unix 
owners to control access to the source 
code (Raymond, 2001; 2003), accessible 
free/open source tools and the internet 
(Moon and Sproul, 2000) and a ‘hacker 
ethic’ discourse that valued open and 
ongoing development (Himanen, 2001; 
Torvalds, 2001). In general, work on 
FLOSS has primarily addressed issues 
of reputation, trust, and value (e.g. Pav-
licek, 2000; Kelty, 2001), the importance 
of the Internet in the coordination of de-
veloper activity (e.g. Kollock and Smith, 
1999; Preece, 2000), and the relationship 
of FLOSS to traditional forms of devel-
opment, economics, and markets (e.g. 
Ghosh, 1998, Benkler, 2002). However, 
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more recently, an ethnographic focus 
has begun to emerge, looking in more 
detail at the specifi c historical and cul-
tural practices involved in simultane-
ously creating code and coding com-
munities (Hakken, 1999; Coleman, 2005; 
Kelty, 2005). 

Pressure of openness
In my own ethnographic work on Linux 
(Ratto, 2003; 2005a; 2005b) I pursue the 
idea that its success is due to the ways 
Linux developers manage a problem of 
access that is shared by all large-scale, 
distributed open source development 
efforts. This problem emerges from the 
need to balance openness with coordi-
nation: on one hand staying open to new 
directions of software development, the 
incorporation of new ideas, and new 
members of the development commu-
nity, but on the other hand, to remain 
focused on continuing development, 
organizing effort, and maintaining di-
rection. Together these two, often con-
tradictory needs create what I term the 
‘pressure of openness’, a pressure faced 
by all infrastructures of shared, distrib-
uted work. The success of Linux is in no 
small part due to its productive manag-
ing of this pressure through deliberate 
and often accidental manipulation of 
the following community characteris-
tics: context, membership, social organ-
ization, and shared objects and modes 
of communication. In the following 
sections I provide some brief contextu-
alization of each category, noting in par-
ticular where similar characteristics can 
also be found in the practices, objects, 
and organization of science. The sec-
tions below thus serve both to explicate 
some of the specifi cities of FLOSS as well 
as its similarity to science organizations 
and practices.  

Context of work
The Linux kernel community is made 
possible by the Linux Kernel Mailing 
List (LKML) conversation which, along 
with the kernel source code itself, is one 
of its most visible products. The LKML 
provides rich data for examining the 
way the kernel designers create the ker-
nel software as well as create the culture 
which sustains this development. There 
the people who are working most closely 
with the development of Linux discuss 
with one another their problems, strate-
gies, dreams, and arguments. This con-
versation includes email posts about the 
structure of the community as well as 
the artifact, and often includes pieces 
of the Linux kernel itself – the source 
code. Thus, the LKML represents more 
than ‘just talk’—retrospective traces 
of the work of Linux kernel develop-
ers—and is instead a context that, along 
with the kernel software code itself, or-
ganizes and structures the practices 
of kernel development. Understanding 
online discussions as dynamic spaces 
of shared work rather than as passive 
traces of past process is important for 
understanding both FLOSS and digitally 
distributed science.   

Performing membership
Rather than designing for ‘users’, many 
Linux developers seem to be creating 
software programs and libraries inher-
ently directed towards other program-
mers with the skills and knowledge to 
re-work the programs for their own use. 
One important similarity between Linux 
developers and other communities of 
workers oriented around the construc-
tion and use of shared digital resourc-
es is the (often unintentional) inward 
focus of development. Free/Libre/Open 
Source Software (FL/OSS) projects (and 
Linux among them) are often criticized 
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for their lack of attention to usabil-
ity issues (e.g. Nickell, 2001; Eklund et 
al., 2002; Nichols and Twidale, 2003).8 
Rather than develop software for a wide 
and diverse audience of users, many 
open source developers create projects 
directed towards users like themselves 
– technically sophisticated and com-
puter-savvy individuals from similar 
backgrounds. This blending of user 
and developer often results in software 
that, while technically sophisticated, re-
mains diffi cult to use and problematic 
to learn for non-computer professionals. 
This is equally the case when it comes to 
participating within the Linux develop-
ment community. While designing for 
re-use does create communities that 
blend making and using, the skills and 
knowledge required to participate in 
this community puts membership out of 
reach for many computer users.The high 
barrier to participating is not accidental. 
Rather, it provides an important policing 
function for the community as a whole. 
The need for self-selection was clearly 
made in the initial post announcing the 
Linux project:

Do you pine for the nice days of Minix-
1.1, when men were men and wrote 
their own device drivers? Are you 
without a nice project and just dying 
to cut your teeth on a OS you can try 
to modify for your needs? Are you 
fi nding it frustrating when everything 
works on Minix? No more all-nighters 
to get a nifty program working? Then 
this post might be just for you :-)9 

Note the nostalgia for an earlier day in 
computing history when all users ‘wrote 
their own device drivers’ (and were 
men). Projects, modifi cation, all-night-
ers – these types of activities and the 

knowledge required to partake in them, 
can be understood as characterizing 
Linux work. Although it can be rightly 
argued that since the early days of devel-
opment, Linux has become a more ‘user-
centric’ system, the number of times 
the quote reproduced above is called 
forth by Linux developers (and social 
researchers) indicates the continuing 
importance of this characterization. As I 
explore later in this article, the continu-
ing adherence to these traditions dem-
onstrate how important practices of re-
working and re-use are to members.   

Social organization
While it is important to note the suc-
cess of Linux as a free and open source 
software development effort, it is also 
important not to over-emphasize the 
‘openness’ of this community. The 
LKML is not a moderated list, meaning 
that anyone with an email account and 
internet access can post to it. However, 
this does not necessarily mean that any-
one can contribute to the Linux kernel, 
or that contributions will be included 
in one of the offi cial source code trees. 
Dave Jones, one of the main developers, 
graphically represented the relationship 
between developers working concur-
rently on the Linux kernel: 

The closest approximation my minds-
eye can make of how things work look 
something like this..

  h h h h h
  \ | | | /
   m m m
    \ |/
    ttt
     |
     l

Matt Ratto



Science Studies 1/2007

80

h  – random j hacker working on same 
fi le/subsystem different goals
m – maintainer for fi le/subsys
t  – ‘forked’ tree maintainer (-ac, -dj, 
-aa etc..)
l  – Linus

Whilst development happens con-
currently in parallel, the notion of 
progress is somewhat serialized as 
changes work their way down to 
Linus.
(This whole thing goes a little astray 
when random j hacker sends patches 
straight to Linus bypassing everyone 
else and they get merged, but the con-
trolled anarchy prevails and everyone 
somehow gets back in sync). 10

Note the hierarchical organizational 
structure, with Linus Torvalds at the 
bottom and ‘random j hackers’ at the 
top. Like in science, the community is 
structurally organized with number of 
past contributions, time served, and 
overall participation playing some role 
in the coordination of hierarchy and the 
acceptance of new contributions by the 
community.

Shared objects 
While the increasing use of source man-
agement systems has had an impact on 
Linux kernel development, a key activity 
of Linux development is predicated on 
the idea of the ‘patch’. Source manage-
ment systems provide more complete 
modes of control over the entire source 
code ‘tree’ than previous ‘patch and 
tarball’ modes of management. This is 
useful for systems like the Linux kernel 
that contain many multiple code sub-
systems and many million lines of code. 
However, despite the adoption of fi rst 
Bitkeeper (2002-2005) and more recently 
GIT (2005-) kernel development remains 
reliant on patches as the smallest unit 

of change. Submitting and ‘committing’ 
patches, particularly for non-lead de-
velopers (those not responsible for large 
kernel sub-systems) is still an important 
part of the development process.

Linux kernel development occurs 
through a process by which sections of 
existing source code are supplemented 
or changed by applying ‘patches’. Patch, 
a software utility originally created by 
Larry Wall and since maintained and 
updated by the Free Software Founda-
tion (FSF), allows segments of a pro-
gram’s source code to be changed with-
out having to completely overwrite the 
whole program.11 Patch serves as an in-
terface to another GNU utility, ‘diff’, a 
software tool that discovers differences 
between fi les. In order to create a patch 
fi le, a programmer uses diff to compare 
the old source code version against the 
one he or she has changed. Diff gener-
ates a fi le containing just the lines that 
are different between the two versions. 
The programmer then uses patch to cre-
ate a patch fi le containing only the dif-
ferent lines. Others who want to incor-
porate the new changes then only have 
to download the patch fi le and use the 
patch utility to apply it to their existing 
source code.  

Patching is important, particularly in 
an FLOSS development context, since 
the rule ‘release early and often’ tends 
to result, at least initially, in software 
requiring frequent updates in order to 
fi x bugs.12 Since these changes are often 
small, typically effecting less than 5% 
of the total program, patching makes 
the process of incremental development 
that is key to FLOSS possible. Rather 
than having to download or get physi-
cal media (such as fl oppy disks, tapes, or 
CDROM’s) of the complete source code 
of a program in order to incorporate new 
changes, one applies the much smaller 
patch fi le using the patch utility. Linux 
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kernel development is dependent upon 
the patch utility, since the source code 
fi les for the complete kernel are quite 
large.13 Further, the LKML itself is used 
to discuss kernel patches as well as to 
distribute them – kernel patches are typ-
ically submitted to it for review. Through 
the LKML, the programmers active in 
kernel development manage their own 
individual and group projects, ask and 
give advice, discuss programming and 
organizational issues, and importantly, 
post patches that incrementally upgrade 
and change the Linux kernel. The LKML 
thus contains both commentary and 
code as well as a combination of both 
individual and social work. 

Shared communication norms
Jointly creating and distributing patches 
and patch code requires adherence to a 
set of shared communication practices, 
articulated on the LKML, in its FAQ, 
and on the web pages of developers. The 
LKML FAQ details the ‘proper’ way to 
contribute patches to the list, including 
how to format the patch, the email by 
which it is sent, as well as who should 
receive it. Eric Raymond, himself both 
a theorist about free and open source 
software as well as a contributor to the 
Linux kernel, also has some advice: 

It is very diffi cult to judge the qual-
ity of code. So developers tend to 
evaluate patches by the quality of 
the submission. They look for clues 
in the submitter’s style and commu-
nications behavior instead — indica-
tions that the person has been in their 
shoes and understands what it’s like 
to have to evaluate and merge an in-
coming patch… experience teaches 
that patches which look careless or 
are packaged in a lazy and inconsid-
erate way are very likely to actually be 
bogus.14

While Raymond’s advice is meant to be 
applicable for all FLOSS projects, his 
comments ring particularly true for the 
reworking of code on the LKML. For ex-
ample, in the post below, a developer 
posts a new patch that adds support for 
the Marvell model of hard drive control-
ler, the low level electronics that allow 
hard drives to work. 

This is the fi rst public release of my 
libata compatible low level driver for 
the Marvell SATA family.  Currently 
it successfully runs in PIO mode on 
a 6081 chip.  EDMA support is in the 
works and should be done shortly.  Re-
view, testing (especially on other fl a-
vors of Marvell), comments welcome.
(code continues…)15

In this post, the developer announces 
the public release of his patch, describes 
briefl y what it does, and provides the 
source code as formatted according to 
LKML rules. This is immediately ac-
knowledged by the maintainer for the 
effected Linux subsystem and a conver-
sation begins as to its technical aspects. 
Alternatively, in a post later that same 
day another coder announces a patch he 
has created to help regulate electronics 
in telecommunication equipment that 
runs Linux. 

The following is a driver I would like 
to see included in the base kernel.
It allows OS control of a device that 
synchronizes signaling hardware 
across a ATCA chassis…
(source code continues)16

The response to this post is very differ-
ent, with initial comments on incorrect 
coding style, spelling errors, and the 
existence of commented out (non-work-
ing) code within the patch itself. It is 
only after the original author addresses 

Matt Ratto



Science Studies 1/2007

82

these issues that a technical conversa-
tion emerges about the actual workings 
of the patch. 

Being an open and non-moderated 
list, anyone can post to the LKML. How-
ever, participating in Linux kernel de-
velopment work requires taking on both 
coding and communication standards. 
Analogous in many ways to those in-
volved in science communities, these 
standards, while often debated and 
transformed, provide a point of refer-
ence for both new and old participants. 
They include rules on how to format 
code, who should/should not be includ-
ed in particular conversations, and how 
to ask for help. Adherence to the com-
municative codes of Linux is made more 
important by the ‘pressure of openness’ 
mentioned earlier. Given the openness 
of the community, performing mem-
bership through the modes and forms 
of appropriate communication serves 
as a more tacit but no less structural 
constraint on access than restricting 
access through online moderation or 
passwords.  

Access to Linux
The brief overview of Linux described 
above provides good evidence of the 
complex technical, social, and commu-
nicative knowledge that must be learned 
in order to have what might be called 
‘access’ to Linux kernel development ac-
tivity. Linux development, like scientifi c 
and technical work more generally, is 
typically more than just an ongoing in-
dividualistic engagement with the rules 
of nature. Instead, this work is often 
explicitly social, including processes 
of inclusion, acknowledgment of past 
workers, and the convincing of other 
members of a research or engineering 
effort. A potential participant must be 
knowledgeable of the past history of 
Unix and Linux at least in so far as it ap-

plies to the ‘hacker ethic’. They must be 
able to ‘write their own device drivers,’ 
in other words have the necessary sub-
ject knowledge to be able to contribute 
to the community by developing source 
code. They must be able to negotiate the 
social and communicative norms that 
defi ne appropriate forms of participa-
tion on the LKML, the shared space of 
development, including knowing their 
place within the hierarchy of the Linux 
organization and knowing how to sub-
mit a patch. All of these aspects come 
together to form what it means to have 
access to Linux kernel development. 
Note that all of these aspects are not re-
quired to have access to the result of this 
work, the Linux kernel itself. However, 
if one wants to participate in develop-
ment and to have a role in the shared 
work of Linux developers, then the 
above aspects must be interpolated into 
individual working practices. In other 
words, access to Linux kernel develop-
ment involves both the right to contrib-
ute and exchange source code but also 
entry into the Linux kernel community. 
This is similar in many ways to the ways 
in which access is negotiated within sci-
ence communities as well, where access 
entails acceptance or at least participa-
tion in the shared structures of scientifi c 
legitimation and institutionalization. 

It is possible to place the above as-
pects of performed membership, shared 
communication and social norms, and 
knowledge of the shared space and ob-
ject, within the framework of access de-
scribed above by Arzberger et al. (2004). 
However, while this framework provides 
a valuable starting point, it does not go 
far enough in understanding the com-
plex and interactive work involved in 
expert, digitally mediated work. A more 
dynamic model of access is required to 
address contexts marked by contribu-
tory activity, digital objects, and shared 
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work, one that take into consideration 
the ways such work takes place in ‘com-
munities of practice’ (Lave and Wenger, 
1991) and requires participation and 
‘apprenticeship’ (Collins, 1987). 

II. Developing a practice-based model 
of access: understanding mediation

There is increasing recognition of the 
mediated nature of human creativity, 
that invention is not a ‘de novo’ internal 
act, but one that involves working with 
and in a materially and socially medi-
ated space. For example, in Cognition 
in the Wild, Hutchins (1995) explores 
how cognition itself is not merely ‘in the 
head’ but consists instead of a distrib-
uted network that includes other people, 
representations, and artifacts. Similar 
insights about joint, mediated activity 
include those related to Distributed Col-
lective Practices and the tradition of Ac-
tivity Theory (Wertsch, 1981; Cole, 1985; 
Engeström, 1987).17 Uncovering what 
kinds of social work is ongoing in prac-
tices of science and technology is par-
ticularly important in the context of ac-
cess, especially in contexts where access 
involves the right to exchange artifacts 
and services, but also requires entry to a 
specifi c community of practioners, entry 
that facilitates not just the exchange of 
fi xed objects, but also the shared, joint 
manipulation of them.

While positions on mediated human 
activity are far from monolithic (Cole, 
1996: 139), there are some general sim-
ilarities. First, they share an interest 
in the simultaneously productive and 
communicative nature of social behav-
ior (Rossi-Landi, 1983). Second, they all 
tend to emphasize the dialetical charac-
ter of human experience, seeing struc-
ture and agency as similarly determined 
and determining. (Lave and Chaiklin, 
1993). Third, and most importantly, 

these theories understand cognition as 
‘distributed’, incorporating individual 
human subjects, the built environment, 
and other people. 

Such perspectives are a good starting 
point for examining the shared work of 
the Linux developers detailed above, as 
well as the increasingly distributed na-
ture of scientifi c activity. Taken together, 
I suggest that most expert work involves 
re-working and re-purposing existing 
objects within shared community spac-
es rather than the creation of entirely 
novel artifacts in individual and isolated 
contexts.18 Practices of ‘reworking’ can 
thus provide a starting point for under-
standing how access is managed in dis-
tributed, shared work. In order to better 
clarify the particular quality and aspects 
of these practices, I use two common 
practices: that of ‘tinkering’ and of ‘re-
designing’ in order to draw a spectrum 
of ‘reworking’. These terms have a dou-
ble importance, fi rst, because these are 
terms that are often used in conceptual 
explorations of scientifi c and engineer-
ing work and second, because they are 
used on the LKML itself as descriptions 
of reworking activities. 

Practices of reworking: tinkering and 
redesigning
If science and engineering is generally 
a process of reworking rather than ‘de 
novo’ innovation, such is certainly the 
case with Linux kernel development. 
Scacchi (2004: 62), for example, under-
stands ‘reinvention’ as an important part 
of FLOSS work, where ‘…sharing, exam-
ining, modifying, and redistributing 
concepts and techniques that have ap-
peared [elsewhere],’ is seen as primary. 
Similarly, Lin has noted the importance 
of ‘tinkering’ for ongoing work that in-
volves ICTs and particularly FLOSS com-
puting (Lin, 2004). Gasser et al. (2003: 2) 
on the other hand emphasize the need 
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to understand how FLOSS developers 
handle the problems of ‘redesign’: ‘how 
does a globally dispersed community of 
FLOSS developers design and redesign 
complex software systems in a continu-
ously emergent manner?’ Further, they 
use the term ‘continuous design’ to refer 
to the constantly updating, designing, 
and reusing practices associated with 
FLOSS development. As they note, this 
is a complex process that includes a lack 
of ‘formal design processes’, the sharing 
of ‘software development informalisms’, 
and an ‘emergent knowledge process’. 
(Gasser et al., 2003).  

What these commentators empha-
size is the ways in which both tinkering 
and redesigning feature as important 
aspects of the reworking practices in-
volved in distributed, open source work. 
However, while redesigning is typically 
understood as a conceptual, thoughtful, 
and ultimately professional act, tinker-
ing is often described as unthoughtful 
and amateur manipulation of material 
resources. Opening up these defi nitions 
requires examining how these terms are 
used in relevant literature as well as by 
members of the Linux community. 

Tinkering
Studies of scientifi c and technical work 
have demonstrated the importance of 
tinkering for science and engineering. 
Knorr-Cetina (1979), for example, uses 
‘tinkering’ to refer to practices in which 
scientists make incremental and ad-hoc 
changes in the material infrastructures 
they use to accomplish scientifi c goals: 
‘Doable’ work as tinkering is empha-
sized in Fujimura’s article “The con-
struction of doable problems in cancer 
research” (Fujimura, 1987). In addition, 
Norris says that “science is tinkery busi-
ness” (Norris, 1993). More specifi cally, 
Nutch (1996) lays out a list of ‘modes’ 

associated with tinkering. Summariz-
ing these modes, they include: using ob-
jects designed for other purposes, creat-
ing research equipment from bits and 
pieces found around the research site, 
modifying available tools, instruments, 
and equipment for coping with specifi c 
emergencies or project contingency, and 
saving time and money by construct-
ing a needed piece of equipment rather 
than buying it through ‘conventional 
channels’. These defi nitions of tinker-
ing describe it as a cognitively rich proc-
ess, one that forms a key aspect of expert 
work. This is equally demonstrated in 
anthropological analyses; in his eth-
nography Working Knowledge, Harper 
(1992) uses the term to explain Willie, a 
‘jack-of-all-trades’ auto mechanic, car-
penter, and metalworker in upstate New 
York. Harper considers Willie “...fi rst as 
a thinker: considering, reconsidering, 
always with a view to what is available.” 
(Harper 1992: 74)

Consequently, ‘tinkering’ stand out 
as a practice that involves a specifi c re-
lationship between people and objects 
mediated by ‘immediacy’ and contin-
gency. Tinkering is the accomplishment 
of ‘doable’ work – doable in the moment, 
making use of existing, rather than dis-
tant material resources. In other words, 
tinkering is fi rst and foremost a practice 
of using immediately available resourc-
es to accomplish accessible tasks. 

This perspective on tinkering can be 
witnessed in action on the LKML. For 
example, when programmers on the 
LKML say that they are ‘tinkering’ with 
a section of the kernel code, we can un-
derstand that they are working directly 
on the code itself, trying things out, 
adding syntax or changing algorithms 
in ‘real-time,’ quickly moving between 
source code and compiled code. Here 
are a few examples from the list itself:  
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...I was tinkering with zipslack this 
time and attempted to mount my 
slightly COD zip drive as umsdos. 
Fine. Did an ls.....oops....seg fault....ls 
stuck in D state. 

... IMO, far too much tinkering of code 
is going on currently without hard 
data (other than ‘it looks good’), and 
this is exacerbating the problems.

There are only two small behavioral 
bug reports I have received at this 
point, one of them looks like a bug 
that was in our networking before I 
began tinkering ;-)

Note that in these examples ‘tinkering’ 
and ‘tinker’ is always described in past 
or future tense: ‘I was tinkering, ...too 
much tinkering, ...who want to tinker, 
I began tinkering...’. Thus tinkering is 
only expressible on the list as something 
that happens outside it – before or after 
the expressive and denominational work 
that is being done on the list itself. The 
list itself is outside the bounds of tinker-
ing. We should remember however, that 
while tinkering is about local contexts 
and ‘doable’, material work, as a practice 
it also involves engagement with think-
ing, refl ecting, and involves the media-
tion of representations. 

Redesigning
Tinkering seems to stand in stark con-
trast to typical defi nitions of designing 
and redesigning, understood as prac-
tices associated with more logical and 
progressive types of work. In Engineer-
ing and the Mind’s Eye, Ferguson (1992) 
traces the development of modern engi-
neering practice. He sees this develop-
ment as a move from the ‘direct design’ 
of the artisan (read: bricoleur or tinker-
er) to the ‘designing by drawings’ of the 

modern engineer. In other words, while 
both the artisan and the designer ac-
tively conceptualize and manipulate the 
material world and therefore do design 
work, only the latter engages with spe-
cifi cally formal tools for representing 
the ongoing process. Ferguson is quick 
to point out that these are “differences 
of format rather than differences of con-
ception” (Ferguson 1992: 5). He goes on: 

Usually, the ‘big’, signifi cant, govern-
ing decisions regarding an artisan’s or 
an engineer’s design have been made 
before the artisan picks up his tools 
or the engineer turns to his drawing 
board. These big decisions have to be 
made fi rst so that there will be some-
thing to criticize and analyze. Thus, 
far from starting with elements and 
putting them together systematically 
to produce a fi nished design, both the 
artisan and the engineer start with vi-
sions of the complete machine, struc-
ture, or device. (Ferguson 1992: 5)  

By characterizing the difference be-
tween artisan and engineering work as 
based in the tools used to conceptualize 
design, rather than the conceptual tools 
used to materialize it, Ferguson does not 
end up ‘primitivizing’ the artisan. Just 
as the engineer analyzes and criticizes, 
so does the artisan. The difference in 
their work is linked to material differ-
ence rather than mental ability. Fergu-
son sees the work of designers as being 
in the forms of the model, the blueprint, 
and the formal drawing. The formaliza-
tion of design representations is in no 
small part due to the need for greater 
coordination of redesigning activity, 
given the larger social contexts in which 
it takes place. 

Here we can see the important role 
the LKML plays in providing the context 
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for designing and redesigning practices. 
Below are some examples where ‘rede-
signing’ is being used on the LMKL: 

The one major downside, right now, 
is that Henry and Richard et al, keep 
talking about redesigning the klips 
structure to fi t in with the more re-
cent kernels better (ala netfi lter, 
maybe). They’ve announced some 
design specs and I suspect that they 
would rather see the newer version of 
klips in the kernel tree than the crufty 
version that we are hobbled with in 
FreeSWAN right now. 
This is a last ditch deal-with-evil safe-
ty net system that has a fairly good 
chance of saving the data without ex-
tensively redesigning the whole sys-
tem. Never said it was perfect. 

Now we get to the reason for this post. 
Has anything changed for 2.4.x? With 
release eminent, we don’t really want 
to go through the redesign and im-
plementation if the architecture is dif-
ferent for 2.4.x. 

In these examples redesigning is under-
stood as a practice that involves terms 
such as ‘design specs’, ‘whole systems’, 
and ‘architectures’. Further, redesign is 
characterized as an ongoing practice, 
facilitated by conversation on the list. 
As something that occurs on and in the 
LKML, the practice of redesign thus re-
quires representing the kernel in vari-
ous ways in the online forum. 

Again, it is important to remember 
that both tinkering and redesign work 
involves the use of representations, and 
that in both cases direct engagement 
with the artifact to be worked is to a 
greater or lesser extent ‘deferred’ while 
representations of it take primary focus. 
As noted above, in the case of redesign 

these include design models, fl owcharts, 
blueprints and similar formal forms; 
tinkering on the other hand makes use 
of less formal representations. This may 
seem confusing, given that the main 
representational form is the source code 
that is being used in both tinkering and 
redesigning practice. 

Shared digital objects: code as artifact, 
code as representation
Representations are used to mediate ac-
tivity in all reworking practices; what 
differentiates the practices of tinkering 
and redesign is not that representations 
are used, but the purposes to which they 
are put. In particular it is important to 
address how software as both human-
readable source code, and as compiled 
machine code, relates to the problems 
of representation and thus the issue of 
access. 

Above I describe developer practices, 
ranging from tinkering as ‘direct’, off-
list work on the kernel to redesign which 
involves the deferral of this immediate 
engagement with the kernel in favor of  
re-presentation through the intermedi-
ary of the LKML. However, both tinker-
ing and redesign involves deferral. All 
activity is, in a sense, mediated. Thus, 
tinkering, like designing, is mediated 
by a number of different aspects, which 
include, but are not limited to mental 
representations, norms, language, and 
many other standards and tools. Differ-
entiating, then, between tinkering and 
designing practices requires examining 
more specifi cally the kinds of artifacts 
and representations used at various 
times by the developers, and focusing 
more intently on how these artifacts im-
pact developers’ ability to engage in var-
ying degrees of ‘directness’ and ‘defer-
ral’. What I want to highlight here is the 
different forms of mediation made pos-
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sible by representations. That a tinkerer 
uses a representation in one way while 
a redesigner uses it in another means 
that differing representational aspects 
are highlighted and differing cognitive 
processes are engaged, but more im-
portantly for questions of access, that 
additional forms of distributed sharing 
become possible. To better illustrate this, 
let me turn to the nature of software as 
artifact more generally, and more spe-
cifi cally, to its role in the development of 
Linux.   

Artifacts and representation: objects and 
tools
As noted above, theories of human cog-
nition that seem applicable to issues of 
access often place peoples’ relationships 
with material or ‘mediating’ artifacts as 
central. In Activity Theory, for example, 
human actions are modeled as a trian-
gle (fi gure 1) where a subject’s goals are 
made possible through the mediation of 
tools.19 However, as noted above, Linux 
kernel patches can be understood as 
both the goal of work as well as a means 
through which work takes place. While 
creating source code is arguably one of 
the main goals of work on the LKML, 
source code also serves as a mediating 
artifact for other goals, including the 
teaching of new developers or the coor-
dinating of larger subsystems of Linux 

– objectives that are key to the ongoing 
coordinating aspects of the Linux com-
munity. Here it is important to distin-
guish between the kinds of tasks soft-
ware accomplishes and the multiple 
ways it participates in different human 
activities. 

One way to consider software as a 
tool is to see it as the means to particu-
lar ends. Figure 2 represents a typical 
software as tool relationship, such as is 
occuring now as I use word processing 
software to write this article. This oc-
curs similarly in the case of the Linux 
Kernel when I use Linux as the OS for my 
computer (fi gure 3). In both these cases, 
the source code, the human-readable 
‘recipe’ of software, has been compiled 
into a machine-readable form, made up 
of object fi les containing ‘machine code’ 
the instructions that are actually being 
executed on the computer hardware. Al-
ternatively, we can understand software 
itself as the goal of work when develop-
ers work to maintain Linux, using appli-
cations such as text editors, and utilities 
like ‘patch’ (see above) to trouble-shoot 
and extend the Linux source code (fi g-
ure 4). In this case, in order for Linux to 
work and operate as part of a computer 
operating system, the source code patch 
that was created must fi rst be compiled 
into machine code before it can be ex-
ecuted on the computer and become a 
tool as originally depicted in Figure 4. 

Based on this explanation, we might 
understand the distinction between 
software as goal and software as tool 
as predicated on whether or not it has 
been compiled. That is, software is a 
tool when it has been compiled into ma-
chine code, and software is the goal of 
work when it is in a source code form.20 
However, it is obvious that when source 
code is being used as an example, the 
source code itself is mediating the more 

Figure 1: Activity Theory: mediating triangle.

Matt Ratto



Science Studies 1/2007

88

community-oriented activities, rather 
than being merely the object of work. In 
the Linux community, as in most cod-
ing groups, source code snippets and 
patches are often used by developers to 
ask questions and to illustrate correct 
coding behavior (Ratto, 2005a: 9-11). In 
these cases, source code is transformed 
from something upon which work takes 
place into a tool used to represent, ex-
pand upon, communicate, and trans-
form that work. It is safe to say that 
while machine code is primarily used as 
a tool, source code can be either a goal 
or a tool – distinguishing between these 
forms requires examining the practices 
to which it is being put.  

What differentiates machine code 
and source code is merely the labor 
and resources required to convert one 
into the other – like the difference be-
tween ice and liquid water, the distinc-
tion between software as object or as 
tool depends upon the moment when 
it is being used, and the purposes to 
which it is being put, rather then being 
based on any formal distinctions. Activ-

Figure 2-4: Software as tool: Linux as tool; 
Linux as goal.

ity theory describes this changing qual-
ity of artifacts as the ‘object-tool shift’ 
(Engeström, 1990) and notes that most 
artifacts have a similar duality (Miettin-
en, 1998).  A productive aspect of the Ac-
tivity Theory argument is that tools shift 
into goals—become objects of attention 
in their own right—when disturbances 
and problems impact the planned work. 

Turning to the study of scientifi c 
practice, a similar quality of artifacts is 
examined by Knorr-Cetina (1999; 2001) 
in her analysis of the work of scientists. 
Complementing Rheinberger’s (1997) 
exploration of ‘epistemic things’ Knorr-
Cetina defi nes epistemic objects as, 
‘…any scientifi c objects of investigation 
that are at the center of a research proc-
ess and in the process of being materi-
ally defi ned’ (Knorr-Cetina, 2001:181). 
These objects are productive because 
of their ‘defi ning characteristic,’ they 
have a ‘...changing, unfolding charac-
ter...lack of ‘object-ivity and complete-
ness of being.’ (Knorr-Cetina, 2001:181) 
While Knorr-Cetina follows Activity 
Theory in understanding artifacts—in 
this case scientifi c objects insubstanti-
ated as material artifacts—as moving 
between a stable ‘technical object’ and 
mutable ‘epistemic object’ formation, 
she identifi es this aspect to be a result of 
the absences within them that have yet 
to be discovered.21 As both Activity The-
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ory and the concept of epistemic objects 
suggest, such qualities of material arti-
facts are only captured in the activities 
and practices of individuals and social 
groups. It is only through a material en-
gagement with the artifacts in question 
that their relevant ‘surplus’ qualities are 
discovered and that their potentiality 
for knowledge acquisition and commu-
nication are revealed. 

Leaving aside the more theoretical di-
mensions of these arguments, how can 
they help us better understand the work 
of the Linux developers and, ultimately, 
the work of distributed science and the 
idea of access? First, we should note a 
signifi cant difference between Activity 
Theory’s Object-Tool shift, and Rhein-
berger and Knorr-Cetina’s descriptions 
of epistemic – technical objects. Where-
as the latter focus most of their attention 
on how epistemic objects are stabilized 
and transformed into technical objects 
as part of the process of scientifi c work, 
Activity Theorists have tended to focus 
on the ways technical tools are desta-
bilized and transformed into objects of 
work when problems occur. It is therefore 
vital not to confuse the binaries drawn 
by both theories; epistemic objects are 
not the same as the objects of work de-
tailed in Activity Theory, nor are Activity 
Theory’s tools the same as Knorr-Cetina 
and Rheinberger’s defi nition of techni-
cal objects. Both theories highlight sim-
ilar but ultimately different productive 
qualities; the theory of epistemic ob-
jects reveals the ways in which the sur-
plus, unfolding qualities of the material 
world generate knowledge, while Activ-
ity Theory focuses to greater extent on 
the ways tools are generative of materi-
ally-productive work. This difference is 
one of focus rather than a problematic of 
the theories themselves – both theories 
provide insight into why and how ob-
jects are transformed as part of working 

practice. What connects both theories is 
an emphasis on the movement between 
two forms – how a stable tool becomes a 
destabilized object, or how an unstable 
epistemic object is transformed into a 
stable technical form. However, what is 
missing in the categorizations of both is 
a way of differentiating between types 
of artifacts and the specifi city of the 
purposes to which they are put. In par-
ticular, both theories provide little pur-
chase for thinking about a key issue for 
distributed communities, namely the 
ways in which action is coordinated over 
distance and over time. For this we must 
turn to an older theory of artifacts, one 
that provides a richer description of the 
variety of the representational qualities 
and purposes.  

Wartofsky (1979) defi nes three classes 
of artifacts: primary artifacts are those 
used in material production and are 
typically thought of as physically exist-
ing; secondary artifacts are understood 
as representations of primary artifacts 
whose purpose is the transmission and 
preservation of existing modes of ac-
tion and beliefs; while tertiary artifacts 
are considered ‘imaginative artifacts’, 
representations that encourage the re-
imagining of current activity. In a sense 
then, Wartofsky’s theory extends the bi-
nary relationships described in Activity 
Theory and in scholarship on epistemic 
objects, by differentiating between their 
representational purposes. Wartofsky’s 
theory provides a way of conceptualiz-
ing the three different aspects of Linux 
software; compiled Linux software as 
machine code can be categorized as 
a primary artifact used to do material 
work (i.e. to control computer hard-
ware,) whereas Linux source code acts 
as both secondary and tertiary artifact, 
as secondary when it is used to repre-
sent current and past actions, and as 
tertiary when it is being used to extend 
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and hypothesize about future activity. 
Each transformation involves particular 
kinds of individual and social resources 
and, equally, provides different modes 
of engagement for individual and social 
work.  

To return then to Ferguson’s defi ni-
tion of designing as engineer’s work on 
blueprints and other physical artifacts 
which ‘stand in’ for and ‘defer’ the ob-
ject being designed, we can character-
ize kernel development as requiring 
all three; fi rst a primary artifact which 
is the focus and outcome of work (e.g. 
the compiled Linux kernel,) second-
ary artifacts that are used to reinforce 
and maintain existing kernel coding 
practice (source code snippets used as 
pedagogical tools,) but also tertiary ar-
tifacts which are used to conceptualize, 
represent and communicate new ways 
of coding and novel directions for kernel 
activity. Equally, we can now describe 
tinkering activity as mostly involving 
shifting between primary and second-
ary artifacts (the kernel and illustrative 
source code snippets that help with im-
mediate programming needs,) whereas 
redesigning requires greater coordina-
tion between secondary and tertiary ar-
tifacts (source code snippets being used 
as illustrations for current activity and 
also as articulations of future possibili-
ties.) An important reason for this dif-
ference is the greater need for coordina-
tion over longer periods of time entailed 
by redesigning practices.       

‘Tight’ and ‘Loose’ – moving from indi-
vidual to social conceptions of work
Above I noted how the Linux software 
shifts between roles, to be both objects 
of work and representations used to 
exchange coding knowledge and com-
municate and transform practice. An 
important aspect of the shift from pri-
mary to secondary to tertiary artifact, 

and the corresponding movement from 
tinkering to redesign practice, is that it 
mostly takes place on the LKML, with-
in a community of other developers. 
Therefore, an initial response might be 
to characterize the movement to the 
list as a movement from an individual-
istic process of work to a group process. 
But tinkering, like all human activity, is 
never fully an individual act. Symbolic 
interactionism has pointed to the con-
cept of the ‘signifi cant other’ in order to 
capture this (Mead and Morris, 1974), 
Knorr-Cetina (2001) has expanded upon 
Rheinberger’s (1997) defi nition of ‘epis-
temic things’ to address how they are 
embedded in ‘epistemic cultures’, and 
the notion of ‘activity’ in Activity Theo-
ry itself is predicated upon historically 
(and thus socially) generated communi-
ties, norms, and rules. While it should 
be noted that in this last tradition, the 
separation between ‘practice’ and ‘ac-
tivity’ is based upon the extent to which 
the work being described is more or less 
social, more or less inherently within a 
community, maintaining this separa-
tion is often quite diffi cult. Becker (1982) 
points to the diffi culty in seeing any 
human work as singular. In one exam-
ple, Becker demonstrates the sociality of 
Van Gogh’s painting (a seemingly whol-
ly individualistic act) by articulating the 
work of others to provide the paint, the 
brushes, and the canvas. In one sense, 
then, each brush stroke, each daub of 
color can be described as a social activ-
ity. While it is ridiculous to describe Van 
Gogh’s involvement in the painting of 
‘Starry Night’ as equivalent to that of his 
brush-maker, it is important to acknowl-
edge this more minor participation as 
legitimate and effectual. While it is pos-
sible that the participation of such-and-
such brush-maker may not be indica-
tive of a unique contribution (Van Gogh 
could possibly choose other brushes 
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and other makers with impunity,) Van 
Gogh’s access to tools must have an ef-
fect on the ultimate result of his work. 
Such a perspective is thus in line with 
the previous problematization of the no-
tion of direct engagement. Just as work 
is never truly ‘direct’, it is also never only 
‘individual’. 

How can we then characterize the 
shift we want to describe, from tinker-
ing sorts of work to design practice? An 
alternative is to examine the organiza-
tional ‘style’ of tinkering and redesign, 
using the terms ‘tight’ and ‘loose’ rather 
than ‘individual’ and ‘group’ work. Such 
a shift in naming focuses on the differ-
ent organizational and communica-
tive needs of workers in these differing 
contexts, rather than positing this dif-
ference as based in the problematic and 
unrefl ective assumptions about human 
activity noted above. ‘Tight’ and ‘loose’ 
have long been used by engineers to 
characterize technical systems. More re-
cently, Charles Perrow (1999) uses them 
to refer to differing organizational qual-
ities of socio-technical infrastructures 
– aggregations of people, communities, 
and artifacts. 

Using this nomenclature, tinkering 
is a more tightly organized and stable 
practice, characterized by a coherence 
of time and place. It is not that tinker-
ing is organized from ‘above’ or that its 
rules are more explicit or formal – quite 
the contrary. Instead, the organiza-
tion of the practice of tinkering is often 
‘self-organized’ and results in a coher-
ent set of relations between the people 
involved, driven, to be sure, by the si-
multaneous nature of the communica-
tions between them. In fact, tinkering 
work mostly takes place within and by 
groups of closely temporally connected 
workers. Although these relations may 
change from location to location and 
from context to context, for the moment 

of the tinkering practice they remain 
stable.

What the move to the list entails is 
thus a move away from the organiza-
tionally more ‘tightly’ connected tinker-
ing work, and towards a more ‘loosely’ 
organized development effort. However, 
the term ‘loose’ should not be taken to 
mean that the rules, positions, or stand-
ards of the group are haphazardly decid-
ed or enforced. Instead, ‘loose’ indicates 
a spatial as well as a temporal distance 
between rules and enforcement, deci-
sion and adoption, tests and results. To 
use the metaphor of a rope, it is not that 
the knots are loosely tied, but that they 
are distantly spaced apart. Such spacing 
results in a sort of ‘wiggle-room’ that al-
lows for different sets of problems—and 
different kinds of solutions—to arise 
within the groups involved. This is made 
more clear by the following use of the 
term on the LKML: 

The real question is why can’t we just 
open 2.5 and only fi x the VM to start 
with? Leave the kernel at 2.4.1pre10 
and possibly use the -ac VM code 
(which has diverged from mainline), 
and leave people (Alan, Ben, Marcelo, 
et. al.) who want to tinker with it in 
small increments and do the drastic 
stuff in 2.5. 

The key point here is that tinkering in-
volves leaving people alone and allow-
ing them to work with the shared objects 
in smaller increments. Tight contexts, 
then, are characterized by self-organiza-
tion and stable relations among groups 
who are working in close temporal, if 
not geographical alignment. 

Thus, while tinkering can be under-
stood as a practice more tightly organ-
ized by space and time, redesigning, 
particularly in view of the whole collec-
tive of Linux development, can be seen 
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as a more loosely organized process. The 
‘looseness’ of the development process 
is often revealed when people on the list 
talk about ‘redesigning’.

...That being so I’d like to run my cur-
rent thoughts for redesigning the ppp 
support in the Linux kernel past peo-
ple on this list.

...I suppose you could argue that re-
designing Linux every few years is 
innovation, but unfortunately it’s the 
same cast of characters doing it, so its 
not very innovative. 

Redesigning can thus understood as a 
practice that requires certain kinds of 
consensus in order for its results to be ac-
cepted and used. Equally, this consensus 
can only be reached through communi-
cative practices that involve large-scale 
decisions that must be agreed-upon by 
the relevant members of the LKML com-
munity. Unlike tinkering, where more 
informal and short-term agreements are 
suffi cient, redesign requires agreements 
that last over longer periods and involve 
less coherent organizational contexts.   

Access to distributed work 
as ‘double-shift’ 
The activities of Linux development are 
various and complicated. However, two 
aspects stand out even in this brief anal-
ysis: fi rst, that development activity re-
quires the ability to shift between code 
as an object of work and code as repre-
sentation, and second, that this shift is 
made necessary by the need to commu-
nicate and share work within the con-
fi nes of the LKML. Therefore, access to 
Linux development, at least in so far as 
this includes the ability to contribute 
and make use of the shared resources 
of the development effort, requires two 
conjoined shifts; a shift from the ‘tight’ 

temporal organization of tinkering work 
to the ‘loose’ organization of redesign-
ing, and a corresponding shift in the 
objects and representations involved. 
However, it is important here to note 
that not all Linux development activ-
ity requires all these shifts, nor do the 
practices of tinkering and redesigning 
outlined in this paper subsume all pos-
sible reworking practice. My goal here is 
not to describe the totality of develop-
ment practice, rather this extended con-
versation is intended to create a work-
ing practice-model of access that will 
provide insight into the ways in which 
participation is mediated in collabora-
tory environments. In order to add addi-
tional detail and turn the more theoreti-
cal conversation into something more 
concrete, in the section below I use the 
above concepts to draw out a chart of re-
working practice. 

III. Experiment: charting the practices 
of Linux kernel developers

The diagram (fi gure 5) visually repre-
sents the concepts explored above in 
order to make them more applicable to 
problems of access. The X axis represents 
the three modes of artifact described by 
Wartofsky, while the Y axis describes the 
two extremes of organizational qual-
ity. I place the two reworking practices, 
tinkering and redesigning, on a third, Z, 
axis, with tinkering being linked most 
closely with primary artifacts within a 
tight contexts, and redesigning being 
focused on tertiary artifacts in a loose 
context.  

What insights are possible by viewing 
Linux kernel development on this fi eld? 
To return to an example previously men-
tioned, I will detail some of the steps in-
volved in a successful patching project. 
While this is a relatively limited descrip-
tion of the complexity of shared devel-
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opment, these steps, and the kinds of 
practices and objects that are required, 
are illustrative of the more complex ac-
tivities of Linux development.22

In the example briefl y described in 
section II, the patch author (A) began by 
posting an introduction and his patch to 
the LKML: 

(A)This is the fi rst public release of my 
libata compatible low level driver for 
the Marvell SATA family.  Currently 
it successfully runs in PIO mode on 
a 6081 chip.  EDMA support is in the 
works and should be done shortly.  Re-
view, testing (especially on other fl a-
vors of Marvell), comments welcome.
 (code continues…)23

Immediately, the subsystem organ-
izer (B) states his willingness to put the 
patch ‘upstream’, meaning to move the 
related source code into the offi cial ker-
nel source tree. However, before this can 
happen, other developers (C & D) begin 
testing and extending the patch, explor-
ing how it works and, in conversation 
with the original developer (A), attempt-
ing to solve problems:  

(B) Even though it’s only PIO, if you 
feel this is stable, I would like to 
get it into upstream soonish. Current 
version looks OK to me.
(C) (Quotes source code, using it to 
demonstrate problem.) 

(A) Some (non-functional) cleanup 
modifi cations since the version 0.10
driver I sent out 2005-08-30. (code 
follows).

(D) First of all, thanks! I’ve been wait-
ing for such a driver to appear…All 
tests are with the UP kernel. The 
hardware is an Asus PSCHSR-A board 
with Adaptec AIC8110 (code snippets 
and explanation of attempted actions 
and problems follow)…

In this process, sections of the patch 
code are referenced and rewritten, posts 
go back and forth between develop-
ers, and a new, slightly changed patch 
emerges. This shift is presented in the 
fi gure 7: 

Soon after this, another developer 
(E) posts some suggested changes to 
the patch code, including the following 
statement:

(E) please don’t include ‘scsi.h’ in new 
drivers.  It will go away soon.
Use the <scsi/*.h> headers and get rid 
of usage of obsolete constructs
in your driver.

This comment refers to the appropriate 
way to reference (e.g. ‘include’) other 
sections of kernel source code in the 
routines of the patch. It begins a larger 
conversation, with the subsystem main-
tainer (B) rejecting this comment and 
saying that the original coding syntax is 
correct:

 
Figure 5: Diagramming tinkering and re-
working, the artifacts involved, and the or-
ganizational context.
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(B) It [the scsi.h include] stays until 
the rest of the libata drivers lose the 
include.
After ATAPI support is done, I can 
stop 2.4.x support, and this and
several other compatisms will go 
away.

Here, the subsystem maintainer (B) is 
referring to future needs and directions 
in the community, stating explicitly that 
the scsi include needs to stay until other 
coding work is accomplished. This con-
versation continues for a few more posts, 
with the subsystem maintainer (B) and 
the critical developer (E) debating is-
sues of future direction of coding effort 
in the community and organizational 
responsibility, each using code from the 
original patch to illustrate their points. 
Ultimately a decision is reached regard-
ing the patch and it is incorporated into 
the larger code tree. 

The two shifts depicted in fi gures 
6 and 7 are driven by the need to over-
come a lack of relational coherence be-
tween organizational contexts and the 
concomitant transformation that must 
occur in the objects and representations 
of work. The fi rst shift occurs because of 
the need to reconceptualize and com-
municate the action and artifact by re-

Figure 6: Chart of fi rst shift, from primary 
to secondary artifact, from tighter to looser 
organizational context.

representing it in a larger context. In this 
case, the mental or informal representa-
tions associated with tinkering practice 
in a tight context are not enough and 
must be supplemented with more de-
ferred representations. This makes pos-
sible the incorporation of others into the 
problem, a shift to a more loosely organ-
ized context, and the movement from 
primary to secondary artifacts (1st shift).  
While the more pragmatic problem is 
solved at this stage, e.g. the patch code is 
extended and fi xed, a new issue occurs, 
namely, the relationship between the 
current code and current coding behav-
ior and how these relate to larger sec-
tions of source code and future needs. 
This engenders another shift, from the 
patch code as a secondary artifact used 
to represent current behavior and needs, 
into a tertiary form where it is used to 
describe and convince others of the 
need for other, future-oriented changes, 
in an even wider (looser) organizational 
context, (2nd shift). 

Ultimately, the patch fi le is included 
in the offi cial network subsystem fi le 
tree indicating a successful ‘redesign’ 
of both the patch code and the Linux 
kernel. This occurs because of the suc-
cessful navigation of the full Z axis line 
of reworking practice, including both 

Figure 7: Chart of second shift, from sec-
ondary to tertiary artifact, and from loose to 
looser organization context.
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tinkering and redesigning modes of en-
gagement. What makes this movement 
possible are two corresponding ‘double-
shifts’, the movement between tight and 
loose contexts, and the transformation 
of the source code patch between pri-
mary and secondary, and secondary to 
tertiary forms. 

The above analysis reveals that the 
ability to shift between the types of ac-
tivities and forms of artifacts is essential 
to the ongoing nature of Linux devel-
opment. Further, the analysis indicat-
ed that one reason for the necessity of 
shifting had to do with the coherence or 
discontinuity of the artifacts involved in 
the work. This latter aspect was indica-
tive of the complex artifactual ground 
upon which the work took place. Key 
aspects of the expertise of the Linux de-
velopers involved their ability to both 
shift Linux from being a tool to being an 
object of work itself and to navigate be-
tween Linux source code as example of 
current activity, and as a vision of future 
needs. Equally, this shift also involves 
a shift from a tightly-coupled organi-
zational context to the distributed and 
loosely-coupled space of the LKML. Fo-
cusing in on the two ‘double-shifts’ de-
scribed above can thus provide a way of 
understanding successful or unsuccess-
ful attempts at access. 

IV. Relevance for Cyberinfrastructure 
and e-science 

At the start of this article I made the 
claim that static models of access are 
less useful for examining and diagnos-
ing issues with distributed scientifi c 
work than a more dynamic model that 
focuses on the working practices of the 
scholars and scientists and the artifacts 
with which they engage. I described cur-
rent models as conceptualizing access 
as a series of preconditions that must 

be met in order for individuals or social 
groups to be able to ‘reach’ that which is 
to be accessed. Such preconditions in-
clude managerial, economic, technical, 
and social factors, each of which must 
be addressed and considered when ac-
cess problems emerge. Seen in this light, 
access and more importantly, access 
problems, are understood as evoking a 
series of hurdles or gates, which must 
be overcome in order to make resources 
available.   

Using the Linux kernel development 
effort as a exemplar of distributed, on-
line work, I traced what an alternative, 
more dynamic model of access might 
reveal, simultaneously redefi ning the 
contexts and artifacts of such work in 
order to call attention to the specifi city 
of activities and their related objects and 
tools. The resultant model conceptual-
izes access in distributed contexts as 
requiring the resources to manage two 
‘double-shifts’. The fi rst double-shift in-
volves moving from tight to more loosely 
organized contexts of activity and a cor-
responding shift in the object of work 
from a primary to a secondary form, e.g. 
from an artifact used to do work to a rep-
resentation used to convey current ac-
tivity. The second double-shift involves 
a further move to even more loosely or-
ganized contexts (particularly in regards 
to time), and a corresponding shift from 
secondary to tertiary form, e.g. from an 
artifact used to represent current activ-
ity, to one used to describe and visualize 
future needs.  

These shifts, then, provide a novel 
way of understanding the issue of ac-
cess, particularly in regards to contexts 
that involve the ‘socio-spatial expan-
sion’ of the object of work (Engeström, 
2001). The joint development of the 
Linux kernel, accomplished via the dis-
tributed form of the LKML, is a good ex-
ample of such a phenomenon. However, 
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as described in the introduction to this 
paper, more and more scientifi c and 
scholarly work is being done in a simi-
lar, distributed manner.24 This has also 
been remarked on by Knorr-Cetina in 
her explorations of ‘epistemic objects’ 
noted above. Access as practice, specifi -
cally in the context of expert, distributed 
work, can thus be analyzed as the ability 
to link complex representations in both 
concrete and abstract spaces to the ob-
jects that they refer to, and, additionally, 
to leverage the use of these representa-
tions in various organizational contexts. 
An analysis of the material tools and 
communicative rules can provide ways 
of examining and diagnosing problems 
of access. Moreover, examining how in-
dividuals shift from ‘tight’ to ‘loose’  or-
ganizational contexts (rather than from 
individual to group work) and from con-
ceptual to material models (rather than 
from concrete to abstract thinking) can 
provide insight for scholars working 
to better understand how distributed, 
shared, and collaborative resources are 
managed. For cyberinfrastructure, e-
science, and e-scholarship in particular, 
two main insights are important. 

First, the practice-based model of 
access described above makes clear 
that supporting distributed scientifi c 
or scholarly work requires supporting 
activities in both local and distributed 
contexts, e.g. both online and offl ine, 
but also requires assisting scientists and 
scholars in transitioning between these 
two modes of work. Pragmatically this 
means that in addition to developing 
online archives or databases, and offl ine 
applications and analytic tools, e-sci-
ence developers should think explicitly 
about how users will track and represent 
the work they do in local spaces as well 
as in shared online spaces. Being able 
to communicate to others in the dis-
tributed context what has been done lo-

cally and in the past is a key element of 
shifting between ‘tight’ and ‘loose’ work 
contexts.  

Second, and more importantly, this 
model of access demonstrates that at-
tention to the objects of work them-
selves and the ways in which they are 
represented in online spaces is of para-
mount importance. Such an insight is 
empirically made in Beaulieu’s analysis 
of digital databases on brain imagery 
(Beaulieu, 2004) and is also explored in 
work on bio-informatics and analyses 
of molecular biology and genetics, (e.g. 
Thacker, 2004; 2005; Ratto, 2006; Ratto 
and Beaulieu, 2007). These analyses 
make clear that in biological work in 
which digital information plays a key 
role, the relationship between digital 
representations as both tools for work 
and objects upon which scientists work, 
and the supposed real-world referents 
that make such work meaningful, are 
far from obvious. 

However, the argument of this paper 
extends previous work by exploring how 
artifacts are used to represent future 
needs and behaviors. What the rework 
of the Linux kernel developers makes 
clear is that it is not just a relationship 
between the Linux kernel as compiled 
‘tool’ (the ‘real-world’ referent in this 
case) and the kernel source code (rep-
resentational ‘object of work’) that is at 
stake, but that relationships between 
various representational forms must 
also be negotiated. In other words, it is 
not just that the kernel as operational 
software is linked to its online depiction 
as source code, but that the relation-
ship between online and offl ine repre-
sentations of the kernel as source code 
must also be negotiated, in particular 
when the code is used to depict or rep-
resent future needs and decisions. One 
of the most important tasks for people 
involved in joint, distributed work is to 
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negotiate not just how inscriptions or 
scientifi c representations act as mimetic 
depictions of some real-world referent, 
but also how representations are related 
to each other. That the multiplicity of 
modes of engagement between scientifi c 
representations is of particular interest 
is demonstrated by recent work in the 
philosophy of science on representation, 
instrumentation, and modeling that de-
scribes its more practice-based and ac-
tive nature (e.g. Morgan and Morrison, 
1999; Radder, 2003; Knuuttila, 2005) and 
notes in particular, the complexity of 
mediational activity involved. 

Such an insight belies the more gen-
eral trend in e-science and cyberinfra-
structural development to sublimate the 
different scholarly and scientifi c objects 
under the more general rubric of ‘data’ 
and to focus on the similarities rather 
than the differences in scientifi c and 
scholarly practice. (Atkins, 2003). What 
the above model tries to make clear is 
that attention to the variety of scientifi c 
and scholarly practices and representa-
tional modes involved in doing distrib-
uted science is required. Such an insight 
follows from the more ethnographic ori-
ented analyses of e-science (e.g. Hine, 
2006), case study-based research (e.g. 
Edwards et al., 2007), as well as theoreti-
cal explorations (e.g. Wouters and Beau-
lieu, 2006; Schroeder and Fry, 2007). In 
other words, while it is true that when 
scientifi c and scholarly objects are 
transformed into data they do tend to 
look the same, understanding how the 
data objects are transformed into vari-
ous types of artifacts as part of the nego-
tiation of tight and loose organizational 
contexts, over space and across time, is 
of paramount important when design-
ing, maintaining, and using distributed 
systems. Access to distributed contexts 
and the issues of coordination this en-
tails remains a problem for e-science 

(Cummings and Kiesler, 2005; Sonnen-
wald, 2006, as cited in Schroeder and 
Fry, 2007: 8). Overcoming these issues 
requires attention to how the artifacts 
involved in scientifi c work are part of 
the processes of coordination that make 
joint activity possible. 

Conclusion

In this paper I used a longer-term dis-
tributed work process, that of Linux ker-
nel development, as a case for exploring 
how access is productively negotiated, 
ultimately developing a chart of rework-
ing that serves as a model for distributed 
access. This exploration involved four 
aspects; fi rst, suggesting that FLOSS de-
velopment provides an interesting view 
into distributed scientifi c and techno-
logical work in terms of joint, materi-
ally mediated practices of re-working. 
Second, defi ning a spectrum of re-work-
ing practices and noting the tools and 
objects of work that are required and 
created by these practices. Third, trac-
ing out how digital objects served as 
both tools, objects, and as visions of a 
desired future. Fourth, describing the 
artifactual and contextual ‘double-
shifts’ that are required to participate in 
shared, distributed work. Since science 
involves, as Latour (1987) has famously 
stated, the movement of inscriptions, a 
focus on the materialized representa-
tions of scientifi c work seems necessary, 
particular in cases of mutable, digital 
representations. 

Studies of traditional scientifi c prac-
tice, such as those of Rheinberger and 
Knorr-Cetina described earlier, have 
examined the context of the laboratory 
and concentrated on the ways scientifi c 
representations are made to stand in for 
the objects they purport to represent, 
including, but not limited to real-world 
phenomenon and the results of scien-
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tifi c apparatus. Science in a distributed 
context is equally based on representa-
tion and inscription but seems to put 
even more pressure on the ways repre-
sentations as epistemic objects in and of 
themselves, carry with them the forms 
and modes of engagement seen as ap-
propriate for the communities involved 
in their construction and extension. If 
Linux is any kind of example, the explo-
sion of artifactual shifting and transfor-
mation that digitality encourages be-
comes a focal point for addressing issues 
of access to resources in these contexts. 
However, artifacts do not (normally) 
transform themselves, but are manipu-
lated by individuals within these com-
munities according to need. Examining 
how people within distributed com-
munities rely on artifacts to shift from 
tightly to loosely coordinated activity, 
and from immediate to future-oriented 
work, requires better understandings of 
how artifacts themselves act as central-
izing resources for accomplishing mate-
rial goals, help organize training, edu-
cation, and normalization of commu-
nity behavior, and also act as visions for 
future directions and possibilities. What 
makes science in distributed cyberin-
frastructures ‘accessible’ is the ability to 
engage with the objects and artifacts of 
this work in all their various guises. 
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Notes

1 I realize that the strategic importance 
of naming can not be underrated, par-
ticularly given the somewhat conten-
tious nature of arguments about credit 
in regards to the Linux operating system 
and the role of previous coding efforts 
in its creation. (e.g. GNU.)  However, to 
emphasize clarity I use the term ‘Linux’ 
to refer to only the kernel software, one 
part of an overall operating system. To 
refer to the full operating system based 
on the Linux kernel I use the phrase 
‘Linux operating system.’

2 LKML archive online at http://www.
ussg.iu.edu/hypermail/linux/kernel/

3  From WordNet lexical database. Online 
at htto://wordnet.princeton.edu/

4  Estimate at The Linux Counter (http://
counter.li.org/) February 8, 2005

5  The GPL enforces two main values of 
free/open source software (F/OSS) de-
velopment. First, every program dis-
tributed under the GPL must include 
the underlying source code that makes 
it work. Second, and related to the fi rst 
condition, the GPL requires that users 
be allowed to use the available source 
code to extend the original program or 
to create their own projects. A caveat to 
this agreement is that developers who 
make use of GPL source code must, in 
turn, also release the results under the 
GPL.

6 The term ‘kernel’ refers to the central 
component of an operating system, typi-
cally tasked with managing the relation-
ship between hardware and software 
resources, with coordinating ongoing 
processes, and with managing access to 
memory. For more detail, see the wiki-
pedia entry at http://en.wikipedia.org/
wiki/Kernel_%28computer_science%29

7  This number, and the start-up date of 
1991, both refer to the development of 
the Linux kernel, the ‘heart’ of the over-
all Linux OS. Calculating the complete 
size of the Linux OS is impossible, given 
the number of various parts of the OS 
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that are customized for different types 
of computer hardware, different pur-
poses, and different users.

8  Although an article in the August 2003 
issue of ComputerWorld magazine cred-
ited Linux with achieving a comparative 
‘user-friendliness’ with Windows XP 
(Blau, 2003).

9  Posted to info-mini@udel.edu; from:
Linus Benedict Torvalds; subject: Free 
Minix-like kernel sources for 386-AT. 

10 Subject: The direction Linux is taking; 
Date: 2001-29 23:33:29 (LKML).

11  For more information about the patch 
utility, see http://www.fsf.org/software/
patch/patch.html.

12 One of Eric Raymond’s rules for open 
source software development. He calls 
it ‘Linus’ law’ based on his understand-
ing of Linux development practice. (Ray-
mond, 2001).

13 Linux kernel version 2.6.20, released on 
4 Feb 2007, is estimated to contain over 
3.5million source lines of code or SLOCs. 
(http://widefox.pbwiki.com/Kernel%20
Comparison%20Linux%20vs%20Windo
ws, accessed 21/03/2007).

14 From ‘Best practices for working with 
open-source developers’, Ch.19 in (Ray-
mond, 2003).

15 Subject: [PATCH 2.6.13] Marvell SATA 
support (PIO mode); Date: Aug. 30, 2005. 
(LKML).

16 Subject: Telecom Clock driver for 
MPCBL0010 ATCA compute blade; Date: 
Aug 30, 2005. (LKML).

17 For more on this notion and particular 
papers about it, see online at http://
www.isrl.uiuc.edu/~gasser/dcp/  and 
http://www.limsi.fr/WkG/PCD2000/in-
dexeng.html.

18  In addition to emphasizing the interac-
tive aspects of technology design, schol-
ars have noted that this work does not 
end in the laboratory or design studio. 
Users, in the moment of application, also 
productively work to ‘re-invent’ technol-
ogies in order to fi t them to the context as 
well as the task. (e.g. Rice & Rogers, 1980; 
Rogers, 1995). Von Hippel has described 
‘lead users’ as early adopters who active-

ly defi ne possible uses as well as rede-
fi ne and customize new technologies for 
novel purposes. (Von Hippel, 1984; 1994; 
2001). Victor and Boynton have used the 
term ‘co-confi guration’ to point to busi-
ness processes predicated on close rela-
tionships between producers and users 
of commodities where the lines between 
the two are partially blurred. (Victor & 
Boynton, 1998). Finally, closer to home, 
Silverstone and Hirsch’s edited volume 
uses the term ‘domestication’ to de-
scribe how the meanings and purposes 
of technologies are constructed (partic-
ularly in the context of the home) with 
the participation of users. (Silverstone & 
Hirsch, 1994; Berger et al., 2006).

19 For an overview of Activity Theory, its 
origins and recent developments, see 
The Center for Activity Theory and De-
velopmental Work Research at the Uni-
versity of Helsinki’s introduction, online 
at http://www.edu.helsinki.fi /activity/
pages/chatanddwr/chat .

20 Such distinctions are made more com-
plex by what happens when running 
software through debuggers and in-
struction set simulators, just-in-time 
compiling and software script execu-
tion – all processes that do not involve 
clearly separate coding and compiling 
steps, that blur the relationship between 
source code and machine code.

21  This point has also been made by Rhein-
berger, most recently in response to a 
critique by David Bloor (Bloor, 2005). 
In his response, Rheinberger wishes to 
make clear that the potentiality of tech-
nical objects to shift into epistemic ones 
is based not on their referential quali-
ties, e.g. how their various character-
istics might be named and described, 
but based on their surplus, their ‘mate-
rial transcendence’ (Rheinberger, 2005: 
406), how they exceed naming. Epistem-
ic objects resist being turned into stable 
technical objects, what Activity Theory 
calls ‘tools’, “…by virtue of their prelimi-
narity, of what we do not yet know about 
them, not by virtue of what we already 
know about them.”
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22 For a more nuanced examination of the 
fi xing of bugs in an FLOSS community, see 
Sandusky & Gasser, 2005. For a brief out-
line of a possible method for automating 
the complex analysis required to under-
stand how bugs are described, tracked, 
and resolved in FLOSS work, see Ripoche 
& Gasser, 2003. 

23 Subject: [PATCH 2.6.13] Marvell SATA 
support (PIO mode); Date: Aug. 30, 2005. 
(LKML).

24 For specifi c case study examples, see 
Wouters & Schröder, 2003; Hine, 2006; 
more details on this general trend, see 
Wouters and Beaulieu, 2006; Thouten-
hoofd and Ratto, 2007.

References

Arzberger, P., Schroeder, P., Beaulieu, A., 
Bowker, G., Casey, K., Laaksonen, L., et 
al. 
2004 “Promoting access to public re-

search data for scientifi c, eco-
nomic, and social development.” 
Data Science 3: 135-152.

Atkins, D. E.
2003  National Science Foundation Blue 

Ribbon Advisory Panel on Cyber-
infrastructure (2003), Revolutio-
nising science and engineering 
through cyberinfrastructure: 
Report of the National Science 
Foundation Blue Ribbon Adviso-
ry Panel on Cyberinfrastructure. 
http://www.nsf.gov/cise/sci/re-
ports/atkins.pdf

Beaulieu, A.
2004 “From brainbank to database: the 

informational turn in the study of 
the brain.” Studies in History and 
Philosophy of Biological and Bio-
medical Sciences. 35, 2: 367-390.

Becker, H. S.
1982 Art worlds. Berkeley: University 

of California Press.
Benkler, Y. 
2002 “Coase’s Penguin, or, Linux and 

the nature of the fi rm.” YALE L. J., 
4.03: 112.

Berger, T., Hartmann, M., Punie, Y., & 
Ward, K.  J.(Eds.) 
2006 Domestication of Media and 

Technology. Maidenhead, UK: 
Open University Press.

Blau, J. 
2003 “Study: Linux nears Windows XP 

usability.” ComputerWorld, Au-
gust 04, 2003.

Bloor, D. 
2005 “Toward a sociology of epistemic 

things.” Perspectives on Science 
13, 3: 285-312. 

Bowker, G. 
2000 “Biodiversity datadiversity.” So-

cial Studies of Science, 30, 5: 
643-684.

Brooks,  F.P.
1975 The Mythical Man-Month: Essays 

on Software Engineering. Read-
ing, MA: Addison-Wesley.

Casey, K. 
2003 “Issues of electronic data ac-

cess in biodiversity.” Pp. 41-64 in 
Wouters & Schröder (Eds.), Prom-
ise and Practice in Data Sharing. 
Amsterdam: NIWI-KNAW.

Cole, M. 
1985  “The zone of proximal develop-

ment: where culture and cogni-
tion create each other.” Pp. 146-
161in Wertsch (Ed.), Culture, 
Communication and Cognition. 
Cambridge: Cambridge Univer-
sity Press.

1996  Cultural Psychology: A Once and 
Future Discipline. Cambridge, 
Mass.: Belknap Press of Harvard 
University Press.

Coleman, E. G.
2005 The Social Construction of Free-

dom in Free and Open Source 
Software: Hackers, Ethics and the 
Liberal Tradition. Doctoral dis-
sertation, Department of Anthro-
pology, University of Chicago.



101

Collins, H.
1987 “Expert systems and the science 

of knowledge.” Pp. 329-348 in Bi-
jker, Hughes & Pinch (Eds.), New 
Directions in the Social Study of 
Technology. Cambridge, Mass.: 
MIT Press.

Cummings, J. & Kiesler, S.
2005 “Collaborative research across 

disciplinary and institutional 
boundaries.” Social Studies of 
Science 35, 5:703-722.

Edwards, P., Jackson, S., Bowker, C. & 
Knobel, C. 
2007 Understanding Infrastructure: 

Dynamics, Tensions, and Design. 
Report of a Workshop on History 
and Theory of Infrastructure: 
Lessons for New Scientifi c Cyber-
infrastructures. January 2007.

Eklund, S., Feldman, M., Trombley, M., & 
Sinha, R. 
2002 Improving the Usability of Open 

Source Software: Usability Test-
ing of StarOffi ce Calc. Paper 
presented at the Conference on 
Human Factors in Computer Sys-
tems (CHI 2002), Minneapolis, 
MN.

Engeström, Y. 
1987 Learning by Expanding. Helsinki: 

Orienta-Konsultit.
1990  “When is a tool? Multiple mean-

ings of artifacts in human activ-
ity.” Pp. 171-195 in Engeström 
(Ed.), Learning, Working and 
Imagining: Twelve Studies in Ac-
tivity Theory. Helsinki: Orienta-
Konsultit Oy.

2001 “Expansive learning at work: 
toward an activity theoretical 
reconceptualization.” Journal of 
Education and Work, 14, 1: 133 
- 156.

Ferguson, E. S. 
1992 Engineering and the Mind’s Eye. 

Cambridge, Mass.: MIT Press.

Fry, J. 
2003 “The cultural shaping of schol-

arly communication on the Web: 
a case study of corpus-based lin-
guistics.” Paper presented at the 
Digital Resources in the Humani-
ties 2003, Cheltenham, England.

Fujimura, J. 
1987 “The construction of doable prob-

lems in cancer research.” Social 
Studies of Science 17: 257-93.

Gasser, L., Scacchi, W., Penne, B. & Ri-
poche, G. 

2003 Understanding Continuous De-
sign in F/OSS. Proceedings of 
the 16th International Confer-
ence on Software & Systems En-
gineering and their Applications 
(ICSSEA-03).

Ghosh, R.A. 
1998  “Cooking pot markets: An eco-

nomic model for the trade in free 
goods and services on the Inter-
net.” First Monday, 3, 3. http://
w w w.f irstmonday.org/issues/
issue3_3/ghosh/index.html.

Glaser, B. G.  & Strauss, A. L. 
1967 The Discovery of Grounded The-

ory: Strategies for Qualitative Re-
search. Chicago: Aldine.

Glaser, B. G. 
1992 Basics of Grounded Theory Anal-

ysis: Emergence vs. Forcing. Mill 
Valley, Ca.: Sociology Press.

Goldenberg-Hart, D. 
2004 “Libraries and changing research 

practices: a report of the ARL/
CNI Forum on e-research and cy-
berinfrastructure.” Association of 
Research Libraries (ARL), 237:1-5.

Hakken, D.
1999 Cyborgs@Cyberspace? An Eth-

nographer Looks at the Future. 
London: Routledge. 

Matt Ratto



Science Studies 1/2007

102

Harper, D. A. 
1992 Working Knowledge: Skill and 

Community in a Small Shop. Ber-
keley: University of California 
Press.

Himanen, P. 
2001 The Hacker Ethic and the Spirit of 

the Information Age. New York: 
Random House.

Hine, C. (Ed.) 
2006  New Infrastructures for Knowl-

edge Production: Understanding 
E-Science. Idea Group.

Houghton, J. W., Steele, C., & Henty, M. 
2003 Changing Research Practices 

in the Digital Information and 
Communication Environment: 
Department of Education, Sci-
ence and Training (Australia).

Hutchins, E. 
1995 Cognition in the Wild. Cam-

bridge, Mass.:MIT Press.
Kelty, C. M.
2001 “Free Software/Free Science.” 

First Monday, 6(12), http://fi rst-
monday.org/issues/issue6_12/
kelty/index.html. 

2005 “Geeks, recursive publics, and 
social imaginaries.’ Cultural An-
thropology 20, 2: 185-214.

Kollock, P., & Smith, M. A. 
1999 Communities in Cyberspace. 

London, New York: Routledge.
Knorr-Cetina, K. 
1979 “Tinkering toward success: pre-

lude to a theory of scientifi c 
practice.” Theory and Society 8: 
347-376.

1999 Epistemic Cultures: How the Sci-
ences Make Knowledge. Cam-
bridge, Mass.: Harvard University 
Press.

2001 “Objectual practice.” Pp. 175-
188 in Knorr-Cetina, v. Savigny 
& Schatzki (Eds.), The Practice 
Turn in Contemporary Society. 
London: Routledge.

Knuuttila, T.
2005 Models as Epistemic Artefacts: 

Toward a Non-Representational-
ist Account of Scientifi c Repre-
sentation. Tarja Knuuttila. Aca-
demic Dissertation, University of 
Helsinki.

Latour, B. 
1987 Science in Action: How to Follow 

Scientists and Engineers through 
Society. Cambridge, Mass.: Har-
vard University Press. 

Lave, J. & Chaiklin, S. 
1993 Understanding Practice: Per-

spectives on Activity and Con-
text. Cambridge, New York: Cam-
bridge University Press.

Lave, J. & Wenger, E. 
1991 Situated Learning: Legitimate 

Peripheral Participation. Cam-
bridge, New York: Cambridge 
University Press.

Lin, Y. 
2004 Hacking Practices and Software 

Development: A Social Worlds 
Analysis of ICT Innovation and 
the Role of Free/Libre Open 
Source Software, Dissertation, 
University of York, September 
2004.

Mead, G. H., & Morris, C. W. 
1974 Mind, Self, and Society: From the 

Standpoint of a Social Behavior-
ist. Chicago: University of Chica-
go Press.

Miettinen, R. 
1998  “Object construction and net-

works in research work: the case 
of research on cellulose degrad-
ing enzymes.” Social Studies of 
Science 28, 3: 423-463.

Morgan, M. & Morrison, M. (Eds.) 
1999 Models as Mediators. Cambridge: 

Cambridge University Press.



103

Moon, J. Y. & Sproull, L. 
2000 “Essence of Distributed Work: 

The Case of the Linux Kernel”, 
First Monday 5(11), http://www.
firstmonday.dk/issues/issue5_
11/moon/index.html.

Nichols, D. M., & Twidale, M. B. 
2003 “The Usability of Open Source Soft-

ware.” First Monday, 8(1), http://
w w w.f i rst monday.d k/issues/
issue8_1/nichols/index.html.

Nickell, S. 
2001 “Why GNOME Hackers Should 

Care about Usability.” In G. U. 
Project (Ed.) http://developer.
gnome.org/projects/gup/arti-
cles/why_care/.

NIH 
2003 Final NIH Statement on Sharing 

Research Data (No. NOT-OD-03-
032): National Institutes of Health 
(NIH).

Norris, K. S. 
1993 Dolphin Days: The Life & Times 

of the Spinner Dolphin. New York: 
Avon Books.

Nutch, F. 
1996 “Gadgets, gizmos, and instru-

ments – science for the tinkering.” 
Science Technology & Human 
Values 21, 2: 214-228.

Pavlicek, R. 
2000 Embracing Insanity: Open Source 

Software Development. Indiana-
polis, IN: SAMS Publishing.

Penchansky, R., & Thomas, J. W. 
1981 “The concept of access: defi nition 

and relationship to consumer 
satisfaction.” Medical Care 19, 2: 
127-140.

Perrow, C. 
1999 Normal Accidents: Living with 

High-Risk Technologies. With a 
new afterword and a postscript 
on the Y2K problem. Princeton, 
N.J.: Princeton University Press.

Preece, J. 
2000 Online Communities: Designing 

Usability, Supporting Sociabil-
ity. Chichester, New York: John 
Wiley.

Radder, H. 
2003 The Philosophy of Scientifi c Ex-

perimentation. Pittsburg, PS: 
University of Pittsburg Press.

Ratto, M. 
2003 The Pressure of Openness: the 

Hybrid Work of Linux Free/Open 
Source Software Developers. Un-
published PhD dissertation, Uni-
versity of California, San Diego, 
USA.

2005a “Embedded technical expres-
sion: code and the leveraging of 
functionality.” The Information 
Society 25, 3: 205-213.

2005b “Don’t fear the penguins: nego-
tiating the trans-local space of 
Linux development.” Current An-
thropology 46, 5: 827–834.

2006 “Foundations and profi les: splic-
ing metaphors in genetic da-
tabases and biobanks.” Public 
Understanding of Science 14, 5: 
31-53.

Ratto, M. & Beaulieu, A. 
2007 “Banking on the Human Ge-

nome Project.” In special issue 
on ‘Genes’ and Society: Looking 
Back on the Future, S. Z. Reuter 
and K. Neves-Graça, (Eds.), Cana-
dian Review of Sociology/Revue 
Canadienne de sociologie, 44, 2: 
175-201. 

Raymond, E. S. 
2001 The Cathedral and the Bazaar: 

Musings on Linux and Open 
Source by an Accidental Revolu-
tionary. Cambridge, MA: O’Reilly.

2003 The Art of Unix Program-
ming. Boston: Addison-Wesley 
Professional. 

Matt Ratto



Science Studies 1/2007

104

Rheinberger, H. 
1997 Towards a History of Epistemic 

Things: Synthesizing Proteins in 
the Test Tube. Stanford: Stanford 
University Press.

2005 “A reply to David Bloor: toward 
a sociology of epistemic things.” 
Perspectives on Science 13, 3: 
406-410.

Rice, R. E. & Rogers, E. M. 
1980 “Re-invention in the innova-

tion process.”  Knowledge: Crea-
tion, diffusion, utilization 1, 4: 
499-514. 

Ripoche, G. & Gasser, L. 
2003 Scalable Automatic Extraction of 

Process Models for Understand-
ing F/OSS Bug Repair, Proceed-
ings of the 16th International 
Conference on Software Engi-
neering & its Applications (ICS-
SEA-03), Paris, France, Decem-
ber, 2003. 

Rogers, E. M. 
1995 Diffusion of Innovation. New 

York: The Free Press.
Rossi-Landi, F. 
1983 Language as Work & Trade: A Semi-

otic Homology for Linguistics & 
Economics. South Hadley, Mass.: 
Bergin & Garvey Publishers.

Sandusky, R. J. &  Gasser, L.
2005  Negotiation and the coordina-

tion of information and activity 
in distributed software problem 
management. GROUP ‘05: ACM 
2005, International Conference 
on Supporting Group Work. Sani-
bel Island,Florida, November 6 - 
9, 2005.

Scacchi, W.
2004 “Free and Open Source Devel-

opment Practices in the Game 
Community.” IEEE Software 2, 
11: 59-66. 

Schenkelaars, F. & Ahmad, I. 
2004 Transparency and Accountabil-

ity in the Public Sector in the 
Arab Region (Concept Paper 4 
No. RAB/01/006): United Nations 
Online Network in Public Admin-
istration and Finance.

Schroeder, R. & Fry, J. 
2007 ”Social science approaches to 

e-Science: framing an agenda.” 
Journal of Computer-Mediated 
Communication, 12, 2. http://
jcmc.indiana.edu/vol12/issue2/
schroeder.html.

Silverstone, R., & Hirsch, E. (Eds.)
1994 Consuming Technologies: Media 

and Information Domestic Spac-
es. London: Routledge.

Sonnenwald, D. 
2006 “Collaborative virtual environ-

ments for scientifi c collaboration: 
technical and organizational de-
sign frameworks.” Pp. 63-96 in 
Schroeder and Axelsson (Eds.), 
Avatars at Work and Play: Collab-
oration and Interaction in Shared 
Virtual Environments. Dordre-
cht, Netherlands: Springer. 

Strauss, A. & Corbin, J. 
1990 Basics of Qualitative Research: 

Grounded Theory Procedures 
and Techniques. Newbury Park: 
Sage Press.

Strauss, A., & Corbin, J., (Eds.)  
1997 Grounded Theory in Practice. 

Thousand Oaks, Ca.: Sage.
Thacker, E. 
2004  Biomedia. University of Minne-

sota Press.
2005  The Global Genome: Biotechnol-

ogy, Politics, and Culture. Cam-
bridge, Mass.: MIT Press.



105

Thoutenhoofd, E. & Ratto, M. 
2007 Cyberinfrastructure and the 

cochlear implant: technologi-
cal objects, social ordering, and 
epistemic confl ict. Conference 
proceedings, Inside Knowledge, 
Amsterdam School of Cultural 
Analysis, March, 2007.

Torvalds, L.
2001 “What makes hackers tick? a.k.a. 

Linus’s Law.” Pp. xiii-xvii in 
Himanen (Ed.), The Hacker Ethic. 
New York: Random House.

Victor, B., & Boynton, A. C. 
1998 Invented Here: Maximizing Your 

Organization‘s Internal Growth 
and Profi tability. Boston, MA: 
Harvard Business School Press.

Von Hippel, E. 
1984 Novel Product Concepts from 

Lead Users: Segmenting Users by 
Experience (Report 84-109). Cam-
bridge, Mass.: Marketing Science 
Institute.

1994 The Sources of Innovation. New 
York: Oxford University Press.

2001 “Innovation by user communi-
ties: learning from open-source 
software.” MIT Sloan Manage-
ment Review 82.

Wartofsky, M. F. 
1979 Models. Representation and the 

Scientifi c Understanding. Dor-
drecht: D. Reidel.

Wertsch, J. (Ed.)
1981 The Concept of Activity in Soviet 

Psychology. Armonk, NY: M.E. 
Sharpe.

Wright, M., Marlino, M., & Sumner, T. 
2002 “Meta-Design of a Community 

Digital Library.” D-lib magazine 
8, 5. http://www.dlib.org/dlib/
may02/wright/05wright.html

Wouters, P. & Schröder, P. (Eds.) 
2003 The Public Domain of Digi-

tal Research Data. Amsterdam: 
NIWI-KNAW. 

Wouters, P. & Beaulieu, A. 
2006 “Imagining e-science beyond 

computation.” Pp. 48-70 in Hine 
(Ed.), New Infrastructures for 
Knowledge Production: Under-
standing E-Science. London: In-
formation Science Publishing. 

Matt Ratto 
Current affi liation:
Research Fellow
HUMlab & History of Ideas
University of Umeå, Sweden

New Affi liation, Summer, 2008:
Assistant Professor
Faculty of Information Studies
University of Toronto

email: matt.ratto@gmail.com

Matt Ratto




