
73

A Practice-Based Model of Access for
Science:

Linux Kernel Development and Shared
Digital Resources

Matt Ratto

In this paper I argue that analyses of access to the contexts and work of ‘e-science’
and scientifi c ‘cyberinfrastructures’ are hindered by models that assume fi xed roles for
contributors and users and undervalue the joint ‘reworking’ of scientifi c data that is one
of the central strengths of such approaches. Using a community of Free/Libre Open
Source software (FLOSS) developers as a complementary case, I develop an alternative
practice-based model of access that focuses on the particular sets of social and
technical knowledges that allow individuals to work together to develop and maintain
shared resources. Importantly, this model of access puts the practices of ‘reworking’
as central rather than peripheral to human activity. Access within this framework is
characterized as the ability to shift between individual and joint, mediated work, and
to understand and manipulate the multiple representations of shared objects such
shifts require.

Keywords: open access, data sharing, distributed work, Linux, Free/open source
software

Though most scholars would agree that
arguments about the internet as es-
sentially socially liberating have been
grossly over-stated, digital networks
have encouraged new possibilities for
the coordination and consolidation of
shared work. These possibilities are in-
creasingly being adopted in scientifi c
and scholarly fi elds, with many disci-
plines creating new digital infrastruc-
tures to facilitate the distribution, shar-
ing, and archiving of scientifi c data and

other forms of scholarly information.
More than just electronic storage facili-
ties, these ‘e-science’ networks and da-
tabases are often predicated on ‘quid-
pro-quo’ relationships; since access to
the stored information requires partici-
pation, scholars and scientists must give
information to get information. Exam-
ples of scientifi c work that involves the
use of digital objects are myriad but in-
clude shared data archives of brain im-
agery (e.g. Beaulieu, 2004) and biodiver-

Science Studies 1/2007

Science Studies, Vol. 20(2007) No. 1, 73-105

Science Studies 1/2007

74

sity databases (e.g. Bowker, 2000; Casey,
2003). Equally, many social science and
humanities archives and infrastruc-
tures are being created that rely on dig-
ital resources, including shared corpora
for linguistic analysis (Fry, 2003), the
creation of community libraries (Wright
et al., 2002) and other initiatives such as
those being developed under the aus-
pices of new e-social science humani-
ties funding, such as the UK’s ESCR Na-
tional Centre for e-Social Science; the
Netherlands’ Virtual Knowledge Studio,
and the US’ Commission on Cyberinfra-
structure for the Humanities and Social
Sciences. An important marker in the
shift towards more distributed forms of
science and scholarship was the crea-
tion in 2003 of the Offi ce of Cyberinfra-
structure by the US National Science
Foundation.

This ongoing move to more distrib-
uted forms of scientifi c and scholarly
work has raised a number of questions
by practitioners, funding agencies, in-
frastructure developers, and scholars,
who all share an interest in creating
systems of knowledge production along
more open, collaborative, and decen-
tralized lines. These questions include
how to make these infrastructures as
open as possible without sacrifi cing the
quality of the information they contain,
how to support the diversity of research
needs and also develop tools for spe-
cifi c requirements, and how to support
traditional research while simultane-
ously helping scientists and scholars
pose novel questions and new forms of
enquiry. Needless to say, these issues
all involve, to a greater or lesser degree,
negotiations of access to the spaces and
the objects of distributed work.

In this paper I construct a practice-
based model of access that explores the
specifi c means by which individuals ne-
gotiate the complex social and technical

landscape involved in digitally-mediat-
ed work, claiming that such a model can
help scientists, scholars, and infrastruc-
ture designers create social and techni-
cal systems that foster inclusion, man-
age issues of quality, and maintain the
specifi city of the scholarly or scientifi c
objects particular to their discipline.
While previous models of access to sci-
entifi c data such as those summarized
below can adequately address questions
of access within bounded and highly
structured institutional frameworks,
new distributed scientifi c practices that
rely on the Internet and digital data re-
semble much more the messy, often dis-
organized work involved in free/libre/
open source (FLOSS) software. This
being the case, a study of how FLOSS de-
velopers manage questions of access can
help us understand the questions raised
by highly distributed and digitally-me-
diated scholarship.

While the argument has often been
made that FLOSS development in some
ways resembles Mertonian science (e.g.
Kelty, 2001), I argue instead that science
and scholarship, in its moves towards
increasingly distributed formations, in
some ways resembles FLOSS. Therefore,
I examine the shared work practices of
a group of developers responsible for the
maintenance and ongoing development
of a key element of the Linux operating
system.1 Linux is considered one of the
primary successes of the FLOSS software
engineering method, characterized by a
distributed form of development, carried
out mostly on the Internet, by a group of
geographically distributed volunteers. A
key element in the development of Linux
is the Linux Kernel Mailing List (LKML),
a shared space/place where contributors
to Linux can exchange source code and
debate issues related to coding practice,
the organizational structure of Linux

75

development, as well as possible future
directions for the community.

The paper consists of the following
sections; in section I, I provide an exam-
ple of some current defi nitions of access
and, through a brief discussion of Linux
development, demonstrate how they are
inadequate for describing how partici-
pation within the Linux community, and
correspondingly, distributed scholar-
ship and science, is mediated. In section
II, I lay out a practice-based model of ac-
cess through an extended discussion of
the shifts in practices and objects that
characterize the ongoing work of Linux
development. In section III I visually
represent the ideas of reworking articu-
lated in section II, using the resultant
chart to detail how successful access in
Linux development progresses. Finally,
in section IV, I refl ect on how this notion
of access can help practitioners, funding
agencies, infrastructure designers, and
scholars better understand the specifi c
needs of scientists and scholars working
in distributed contexts, concluding with
some fi nal insights about the relation-
ship between digitality and the objects
and representations of science.

Data and methods

The following analysis of access in
Linux kernel development results from
a fi ve year qualitative ethnographic and
historiographic study on Linux devel-
opment conducted primarily between
1998-2003. The data sources used in that
study included the web pages of Linux
developers, online and offl ine journal-
ism about Linux development, analyses
of Linux source code itself, and obser-
vation and participation on email lists
related to Linux development. These are
reported in more depth in Ratto (2003;
2005a; 2005b). The primary source used
in the present article is the Linux Kernel

Mailing List (LKML) archive hosted at
Indiana University.2 This online archive
contains emails from as far back as 1996,
and, as of May 1, 2003 contained over 1.6
gigabytes of individual entries. In 2002-
2003 with the permission of the archive
personnel I copied approximately 1 GB
of this material to a local Unix-based
computer in order to carry out more
complex searches than were possible
with the online system. The major-
ity of quotes reproduced in the sections
below are a result of searches on a par-
tial sample of the overall LKML archive
using the grep search tool. The key
search terms were generated through
a grounded theory analysis (Glaser and
Strauss, 1967; Glaser, 1992; Strauss and
Corbin, 1990; 1997) which followed the
following overlapping phases; fi rst, on-
going observation and conversations
about development activity; second,
collection and reading of relevant mate-
rials; third, an iterative process of cod-
ing and memoing gathered materials;
fourth, the development of categories
and properties that help explain aspects
of development; fi fth, an emergent proc-
ess of writing and theory building that
describes relations between these cat-
egories and properties. The quotes used
in section IV of this paper come from a
follow-up study on the relationship be-
tween FLOSS and scientifi c practice car-
ried out in 2006-2007.

I. Defi ning access, openness,
and Gnu/Linux

The role of ‘open access’ in current sci-
ence policy (e.g. Houghton et al., 2003;
NIH, 2003; Goldenberg-Hart, 2004) dem-
onstrates the importance of conceptual-
izing access as an active, ongoing prac-
tice. This was highlighted in an article
by the OECD Follow-up Group on Issues
of Access to Publicly Funded Research

Matt Ratto

Science Studies 1/2007

76

Data (Arzberger et al., 2004). In this ar-
ticle the authors critiqued the recent
focus on increasing access to the output
of scientifi c work, (i.e. scientifi c publica-
tions), rather than addressing what they
saw as a more serious problem: the lack
of access to the raw material of scientifi c
work, namely research data. Access to
research data often requires a ‘quid-pro-
quo’ between research scientists, in that
it is not merely about passive access to
static material, but is predicated instead
on a relationship to shared material and
the common construction of a joint re-
source. Understanding this relationship
as requiring an ongoing process of ne-
gotiation within a system of join, expert
work requires rethinking traditional
defi nitions of access.

Access
Access, in relationship to issues involv-
ing the use of technologies or scientifi c
knowledge, is typically conceptualized
as the ability or right to obtain, make
use of, or take advantage of something.3
This concept of access is typically ana-
lyzed by mapping a set of properties in
order to characterize relationships be-
tween providers and consumers of data
or services. For example, in their anal-
ysis of the health care industry, Pen-
chansky and Thomas (1981) focused on
‘the 5 A’s’, affordability, availability, ac-
cessibility, accommodation, and accept-
ability. Other analyses of access have
focused on properties such as trans-
parency and information management,
(e.g. Schenkelaars and Ahmad, 2004)
and/or the need for incentives and re-
ward structures to overcome resistance.
(e.g. Houghton et al., 2003).

Similarly, in the article by the OECD
Follow-up Group (Arzberger et al., 2004)
mentioned above, the researchers divid-
ed issues of access into fi ve domains; In-

stitutional & Managerial, Legal & Policy,
Financial & Budgetary, Cultural & Be-
havioral, and Technological, all linked
in reciprocal relationships. (Arzberger
et al., 2004: 144.) An important addition
to previous descriptions of access, this
model includes cultural and behavio-
ral factors as an essential category of
properties to address when consider-
ing questions related to access, rather
than relegating it to a subordinate po-
sition. Under this category, the OECD
group placed properties related to trust
in research quality, codes of conduct
based in professionalism, and how fl ex-
ible members of a research community
might be in approaching permutations
of their rules and procedures. Another
important aspect of this model is that it
demonstrates the connected nature of
the multiple domains of access, e.g. that
fi nancial issues are connected to legal
context which is in turn infl uenced by
technological considerations.

Such mappings of access are demon-
strably useful as one way to evaluate
and/or problematize current systems
of access to important social resources.
By directing focus towards the vari-
ous aspects of access, these categories
can provide a framework for examining
what kinds of restrictions may mani-
fest themselves, and what domains
(legal, economic, cultural, etc.) may
be involved. However, this framework
requires both a clear defi nition of the
boundaries between the various aspects
(e.g. what counts as ‘institutional and
managerial’ and what can be considered
‘legal and policy’), as well as static mo-
ments in which access can be analyzed.
Thus while it might work very well for
highly structured and bounded institu-
tional contexts where both responsibili-
ties and contexts of access are clear and
can be described, this framework is not

77

as useful for less structured contexts,
such as those of distributed science and
FLOSS work. Further, this model does
not differentiate between the work that
is shared – research data is considered
to be the same whatever particular con-
text of work it relates to, be it anthropol-
ogy, biology, geology, or computer sci-
ence. This is particularly problematic
for cyberinfrastructure and e-science,
given the ways in which such infrastruc-
tures are expected to move beyond the
passive database to become contexts for
shared work in which scientifi c objects
are actively transformed, reworked,
and repurposed. What previous mod-
els of access do not adequately address
is the role scientifi c objects themselves
play in how systems can and should be
designed.

Given the complexity of the intercon-
necting issues, a more dynamic and
practice-based model of access will bet-
ter serve those interested in diagnosing
and designing shared digital resources.
FLOSS development and the practices
of Linux Kernel developers in particu-
lar, provide a rich resource for exploring
questions of access.

Gnu/Linux
Gnu/Linux is an operating system, like
Microsoft Windows or Apple’s Mac OS
that provides services (such as inter-
faces, fi le systems, and application envi-
ronments) to personal computer users.
Gnu/Linux is currently running on ap-
proximately 29 – 35 % of all computer
servers, as well as on a much smaller per-
centage of desktop computers. Some es-
timates put the current number of total
Gnu/Linux users at around 18 million.4

Unlike Windows or MacOS, Gnu/
Linux has been mostly developed by a
geographically distributed group of vol-
unteer developers, who have used the

Internet and a license called the General
Public License, or GPL, to maintain ac-
cess to the results of their work. ‘Linux’
although often used as a short-hand for
the total operating system, more prop-
erly names the effort to create what is
probably the most complex part of this
system, its kernel.5, 6 The originator of
Linux, Linus Torvalds, along with a
loose and changing group of developers
has maintained ongoing development
since 1991, making it one of the longest
projects of this type. The result of this
project is a set of programs, contain-
ing more than 15 million lines of com-
puter code.7 Thus, Linux demonstrates
that ‘open source’ efforts in develop-
ing large-scale software projects can
be successful, despite traditional theo-
ries about software development. (e.g.
Brooks, 1975.)

While early journalism about Linux
often reported its success as a direct re-
sult of the abilities of the instigator of
the project, Linus Torvalds, academic
work has tended to stress a number of
additional pre-conditions such as an ex-
isting group of computer experts, knowl-
edgeable about the Unix software envi-
ronment and resistant to efforts by Unix
owners to control access to the source
code (Raymond, 2001; 2003), accessible
free/open source tools and the internet
(Moon and Sproul, 2000) and a ‘hacker
ethic’ discourse that valued open and
ongoing development (Himanen, 2001;
Torvalds, 2001). In general, work on
FLOSS has primarily addressed issues
of reputation, trust, and value (e.g. Pav-
licek, 2000; Kelty, 2001), the importance
of the Internet in the coordination of de-
veloper activity (e.g. Kollock and Smith,
1999; Preece, 2000), and the relationship
of FLOSS to traditional forms of devel-
opment, economics, and markets (e.g.
Ghosh, 1998, Benkler, 2002). However,

Matt Ratto

Science Studies 1/2007

78

more recently, an ethnographic focus
has begun to emerge, looking in more
detail at the specifi c historical and cul-
tural practices involved in simultane-
ously creating code and coding com-
munities (Hakken, 1999; Coleman, 2005;
Kelty, 2005).

Pressure of openness
In my own ethnographic work on Linux
(Ratto, 2003; 2005a; 2005b) I pursue the
idea that its success is due to the ways
Linux developers manage a problem of
access that is shared by all large-scale,
distributed open source development
efforts. This problem emerges from the
need to balance openness with coordi-
nation: on one hand staying open to new
directions of software development, the
incorporation of new ideas, and new
members of the development commu-
nity, but on the other hand, to remain
focused on continuing development,
organizing effort, and maintaining di-
rection. Together these two, often con-
tradictory needs create what I term the
‘pressure of openness’, a pressure faced
by all infrastructures of shared, distrib-
uted work. The success of Linux is in no
small part due to its productive manag-
ing of this pressure through deliberate
and often accidental manipulation of
the following community characteris-
tics: context, membership, social organ-
ization, and shared objects and modes
of communication. In the following
sections I provide some brief contextu-
alization of each category, noting in par-
ticular where similar characteristics can
also be found in the practices, objects,
and organization of science. The sec-
tions below thus serve both to explicate
some of the specifi cities of FLOSS as well
as its similarity to science organizations
and practices.

Context of work
The Linux kernel community is made
possible by the Linux Kernel Mailing
List (LKML) conversation which, along
with the kernel source code itself, is one
of its most visible products. The LKML
provides rich data for examining the
way the kernel designers create the ker-
nel software as well as create the culture
which sustains this development. There
the people who are working most closely
with the development of Linux discuss
with one another their problems, strate-
gies, dreams, and arguments. This con-
versation includes email posts about the
structure of the community as well as
the artifact, and often includes pieces
of the Linux kernel itself – the source
code. Thus, the LKML represents more
than ‘just talk’—retrospective traces
of the work of Linux kernel develop-
ers—and is instead a context that, along
with the kernel software code itself, or-
ganizes and structures the practices
of kernel development. Understanding
online discussions as dynamic spaces
of shared work rather than as passive
traces of past process is important for
understanding both FLOSS and digitally
distributed science.

Performing membership
Rather than designing for ‘users’, many
Linux developers seem to be creating
software programs and libraries inher-
ently directed towards other program-
mers with the skills and knowledge to
re-work the programs for their own use.
One important similarity between Linux
developers and other communities of
workers oriented around the construc-
tion and use of shared digital resourc-
es is the (often unintentional) inward
focus of development. Free/Libre/Open
Source Software (FL/OSS) projects (and
Linux among them) are often criticized

79

for their lack of attention to usabil-
ity issues (e.g. Nickell, 2001; Eklund et
al., 2002; Nichols and Twidale, 2003).8
Rather than develop software for a wide
and diverse audience of users, many
open source developers create projects
directed towards users like themselves
– technically sophisticated and com-
puter-savvy individuals from similar
backgrounds. This blending of user
and developer often results in software
that, while technically sophisticated, re-
mains diffi cult to use and problematic
to learn for non-computer professionals.
This is equally the case when it comes to
participating within the Linux develop-
ment community. While designing for
re-use does create communities that
blend making and using, the skills and
knowledge required to participate in
this community puts membership out of
reach for many computer users.The high
barrier to participating is not accidental.
Rather, it provides an important policing
function for the community as a whole.
The need for self-selection was clearly
made in the initial post announcing the
Linux project:

Do you pine for the nice days of Minix-
1.1, when men were men and wrote
their own device drivers? Are you
without a nice project and just dying
to cut your teeth on a OS you can try
to modify for your needs? Are you
fi nding it frustrating when everything
works on Minix? No more all-nighters
to get a nifty program working? Then
this post might be just for you :-)9

Note the nostalgia for an earlier day in
computing history when all users ‘wrote
their own device drivers’ (and were
men). Projects, modifi cation, all-night-
ers – these types of activities and the

knowledge required to partake in them,
can be understood as characterizing
Linux work. Although it can be rightly
argued that since the early days of devel-
opment, Linux has become a more ‘user-
centric’ system, the number of times
the quote reproduced above is called
forth by Linux developers (and social
researchers) indicates the continuing
importance of this characterization. As I
explore later in this article, the continu-
ing adherence to these traditions dem-
onstrate how important practices of re-
working and re-use are to members.

Social organization
While it is important to note the suc-
cess of Linux as a free and open source
software development effort, it is also
important not to over-emphasize the
‘openness’ of this community. The
LKML is not a moderated list, meaning
that anyone with an email account and
internet access can post to it. However,
this does not necessarily mean that any-
one can contribute to the Linux kernel,
or that contributions will be included
in one of the offi cial source code trees.
Dave Jones, one of the main developers,
graphically represented the relationship
between developers working concur-
rently on the Linux kernel:

The closest approximation my minds-
eye can make of how things work look
something like this..

 h h h h h
 \ | | | /
 m m m
 \ |/
 ttt
 |
 l

Matt Ratto

Science Studies 1/2007

80

h – random j hacker working on same
fi le/subsystem different goals
m – maintainer for fi le/subsys
t – ‘forked’ tree maintainer (-ac, -dj,
-aa etc..)
l – Linus

Whilst development happens con-
currently in parallel, the notion of
progress is somewhat serialized as
changes work their way down to
Linus.
(This whole thing goes a little astray
when random j hacker sends patches
straight to Linus bypassing everyone
else and they get merged, but the con-
trolled anarchy prevails and everyone
somehow gets back in sync). 10

Note the hierarchical organizational
structure, with Linus Torvalds at the
bottom and ‘random j hackers’ at the
top. Like in science, the community is
structurally organized with number of
past contributions, time served, and
overall participation playing some role
in the coordination of hierarchy and the
acceptance of new contributions by the
community.

Shared objects
While the increasing use of source man-
agement systems has had an impact on
Linux kernel development, a key activity
of Linux development is predicated on
the idea of the ‘patch’. Source manage-
ment systems provide more complete
modes of control over the entire source
code ‘tree’ than previous ‘patch and
tarball’ modes of management. This is
useful for systems like the Linux kernel
that contain many multiple code sub-
systems and many million lines of code.
However, despite the adoption of fi rst
Bitkeeper (2002-2005) and more recently
GIT (2005-) kernel development remains
reliant on patches as the smallest unit

of change. Submitting and ‘committing’
patches, particularly for non-lead de-
velopers (those not responsible for large
kernel sub-systems) is still an important
part of the development process.

Linux kernel development occurs
through a process by which sections of
existing source code are supplemented
or changed by applying ‘patches’. Patch,
a software utility originally created by
Larry Wall and since maintained and
updated by the Free Software Founda-
tion (FSF), allows segments of a pro-
gram’s source code to be changed with-
out having to completely overwrite the
whole program.11 Patch serves as an in-
terface to another GNU utility, ‘diff’, a
software tool that discovers differences
between fi les. In order to create a patch
fi le, a programmer uses diff to compare
the old source code version against the
one he or she has changed. Diff gener-
ates a fi le containing just the lines that
are different between the two versions.
The programmer then uses patch to cre-
ate a patch fi le containing only the dif-
ferent lines. Others who want to incor-
porate the new changes then only have
to download the patch fi le and use the
patch utility to apply it to their existing
source code.

Patching is important, particularly in
an FLOSS development context, since
the rule ‘release early and often’ tends
to result, at least initially, in software
requiring frequent updates in order to
fi x bugs.12 Since these changes are often
small, typically effecting less than 5%
of the total program, patching makes
the process of incremental development
that is key to FLOSS possible. Rather
than having to download or get physi-
cal media (such as fl oppy disks, tapes, or
CDROM’s) of the complete source code
of a program in order to incorporate new
changes, one applies the much smaller
patch fi le using the patch utility. Linux

81

kernel development is dependent upon
the patch utility, since the source code
fi les for the complete kernel are quite
large.13 Further, the LKML itself is used
to discuss kernel patches as well as to
distribute them – kernel patches are typ-
ically submitted to it for review. Through
the LKML, the programmers active in
kernel development manage their own
individual and group projects, ask and
give advice, discuss programming and
organizational issues, and importantly,
post patches that incrementally upgrade
and change the Linux kernel. The LKML
thus contains both commentary and
code as well as a combination of both
individual and social work.

Shared communication norms
Jointly creating and distributing patches
and patch code requires adherence to a
set of shared communication practices,
articulated on the LKML, in its FAQ,
and on the web pages of developers. The
LKML FAQ details the ‘proper’ way to
contribute patches to the list, including
how to format the patch, the email by
which it is sent, as well as who should
receive it. Eric Raymond, himself both
a theorist about free and open source
software as well as a contributor to the
Linux kernel, also has some advice:

It is very diffi cult to judge the qual-
ity of code. So developers tend to
evaluate patches by the quality of
the submission. They look for clues
in the submitter’s style and commu-
nications behavior instead — indica-
tions that the person has been in their
shoes and understands what it’s like
to have to evaluate and merge an in-
coming patch… experience teaches
that patches which look careless or
are packaged in a lazy and inconsid-
erate way are very likely to actually be
bogus.14

While Raymond’s advice is meant to be
applicable for all FLOSS projects, his
comments ring particularly true for the
reworking of code on the LKML. For ex-
ample, in the post below, a developer
posts a new patch that adds support for
the Marvell model of hard drive control-
ler, the low level electronics that allow
hard drives to work.

This is the fi rst public release of my
libata compatible low level driver for
the Marvell SATA family. Currently
it successfully runs in PIO mode on
a 6081 chip. EDMA support is in the
works and should be done shortly. Re-
view, testing (especially on other fl a-
vors of Marvell), comments welcome.
(code continues…)15

In this post, the developer announces
the public release of his patch, describes
briefl y what it does, and provides the
source code as formatted according to
LKML rules. This is immediately ac-
knowledged by the maintainer for the
effected Linux subsystem and a conver-
sation begins as to its technical aspects.
Alternatively, in a post later that same
day another coder announces a patch he
has created to help regulate electronics
in telecommunication equipment that
runs Linux.

The following is a driver I would like
to see included in the base kernel.
It allows OS control of a device that
synchronizes signaling hardware
across a ATCA chassis…
(source code continues)16

The response to this post is very differ-
ent, with initial comments on incorrect
coding style, spelling errors, and the
existence of commented out (non-work-
ing) code within the patch itself. It is
only after the original author addresses

Matt Ratto

Science Studies 1/2007

82

these issues that a technical conversa-
tion emerges about the actual workings
of the patch.

Being an open and non-moderated
list, anyone can post to the LKML. How-
ever, participating in Linux kernel de-
velopment work requires taking on both
coding and communication standards.
Analogous in many ways to those in-
volved in science communities, these
standards, while often debated and
transformed, provide a point of refer-
ence for both new and old participants.
They include rules on how to format
code, who should/should not be includ-
ed in particular conversations, and how
to ask for help. Adherence to the com-
municative codes of Linux is made more
important by the ‘pressure of openness’
mentioned earlier. Given the openness
of the community, performing mem-
bership through the modes and forms
of appropriate communication serves
as a more tacit but no less structural
constraint on access than restricting
access through online moderation or
passwords.

Access to Linux
The brief overview of Linux described
above provides good evidence of the
complex technical, social, and commu-
nicative knowledge that must be learned
in order to have what might be called
‘access’ to Linux kernel development ac-
tivity. Linux development, like scientifi c
and technical work more generally, is
typically more than just an ongoing in-
dividualistic engagement with the rules
of nature. Instead, this work is often
explicitly social, including processes
of inclusion, acknowledgment of past
workers, and the convincing of other
members of a research or engineering
effort. A potential participant must be
knowledgeable of the past history of
Unix and Linux at least in so far as it ap-

plies to the ‘hacker ethic’. They must be
able to ‘write their own device drivers,’
in other words have the necessary sub-
ject knowledge to be able to contribute
to the community by developing source
code. They must be able to negotiate the
social and communicative norms that
defi ne appropriate forms of participa-
tion on the LKML, the shared space of
development, including knowing their
place within the hierarchy of the Linux
organization and knowing how to sub-
mit a patch. All of these aspects come
together to form what it means to have
access to Linux kernel development.
Note that all of these aspects are not re-
quired to have access to the result of this
work, the Linux kernel itself. However,
if one wants to participate in develop-
ment and to have a role in the shared
work of Linux developers, then the
above aspects must be interpolated into
individual working practices. In other
words, access to Linux kernel develop-
ment involves both the right to contrib-
ute and exchange source code but also
entry into the Linux kernel community.
This is similar in many ways to the ways
in which access is negotiated within sci-
ence communities as well, where access
entails acceptance or at least participa-
tion in the shared structures of scientifi c
legitimation and institutionalization.

It is possible to place the above as-
pects of performed membership, shared
communication and social norms, and
knowledge of the shared space and ob-
ject, within the framework of access de-
scribed above by Arzberger et al. (2004).
However, while this framework provides
a valuable starting point, it does not go
far enough in understanding the com-
plex and interactive work involved in
expert, digitally mediated work. A more
dynamic model of access is required to
address contexts marked by contribu-
tory activity, digital objects, and shared

83

work, one that take into consideration
the ways such work takes place in ‘com-
munities of practice’ (Lave and Wenger,
1991) and requires participation and
‘apprenticeship’ (Collins, 1987).

II. Developing a practice-based model
of access: understanding mediation

There is increasing recognition of the
mediated nature of human creativity,
that invention is not a ‘de novo’ internal
act, but one that involves working with
and in a materially and socially medi-
ated space. For example, in Cognition
in the Wild, Hutchins (1995) explores
how cognition itself is not merely ‘in the
head’ but consists instead of a distrib-
uted network that includes other people,
representations, and artifacts. Similar
insights about joint, mediated activity
include those related to Distributed Col-
lective Practices and the tradition of Ac-
tivity Theory (Wertsch, 1981; Cole, 1985;
Engeström, 1987).17 Uncovering what
kinds of social work is ongoing in prac-
tices of science and technology is par-
ticularly important in the context of ac-
cess, especially in contexts where access
involves the right to exchange artifacts
and services, but also requires entry to a
specifi c community of practioners, entry
that facilitates not just the exchange of
fi xed objects, but also the shared, joint
manipulation of them.

While positions on mediated human
activity are far from monolithic (Cole,
1996: 139), there are some general sim-
ilarities. First, they share an interest
in the simultaneously productive and
communicative nature of social behav-
ior (Rossi-Landi, 1983). Second, they all
tend to emphasize the dialetical charac-
ter of human experience, seeing struc-
ture and agency as similarly determined
and determining. (Lave and Chaiklin,
1993). Third, and most importantly,

these theories understand cognition as
‘distributed’, incorporating individual
human subjects, the built environment,
and other people.

Such perspectives are a good starting
point for examining the shared work of
the Linux developers detailed above, as
well as the increasingly distributed na-
ture of scientifi c activity. Taken together,
I suggest that most expert work involves
re-working and re-purposing existing
objects within shared community spac-
es rather than the creation of entirely
novel artifacts in individual and isolated
contexts.18 Practices of ‘reworking’ can
thus provide a starting point for under-
standing how access is managed in dis-
tributed, shared work. In order to better
clarify the particular quality and aspects
of these practices, I use two common
practices: that of ‘tinkering’ and of ‘re-
designing’ in order to draw a spectrum
of ‘reworking’. These terms have a dou-
ble importance, fi rst, because these are
terms that are often used in conceptual
explorations of scientifi c and engineer-
ing work and second, because they are
used on the LKML itself as descriptions
of reworking activities.

Practices of reworking: tinkering and
redesigning
If science and engineering is generally
a process of reworking rather than ‘de
novo’ innovation, such is certainly the
case with Linux kernel development.
Scacchi (2004: 62), for example, under-
stands ‘reinvention’ as an important part
of FLOSS work, where ‘…sharing, exam-
ining, modifying, and redistributing
concepts and techniques that have ap-
peared [elsewhere],’ is seen as primary.
Similarly, Lin has noted the importance
of ‘tinkering’ for ongoing work that in-
volves ICTs and particularly FLOSS com-
puting (Lin, 2004). Gasser et al. (2003: 2)
on the other hand emphasize the need

Matt Ratto

Science Studies 1/2007

84

to understand how FLOSS developers
handle the problems of ‘redesign’: ‘how
does a globally dispersed community of
FLOSS developers design and redesign
complex software systems in a continu-
ously emergent manner?’ Further, they
use the term ‘continuous design’ to refer
to the constantly updating, designing,
and reusing practices associated with
FLOSS development. As they note, this
is a complex process that includes a lack
of ‘formal design processes’, the sharing
of ‘software development informalisms’,
and an ‘emergent knowledge process’.
(Gasser et al., 2003).

What these commentators empha-
size is the ways in which both tinkering
and redesigning feature as important
aspects of the reworking practices in-
volved in distributed, open source work.
However, while redesigning is typically
understood as a conceptual, thoughtful,
and ultimately professional act, tinker-
ing is often described as unthoughtful
and amateur manipulation of material
resources. Opening up these defi nitions
requires examining how these terms are
used in relevant literature as well as by
members of the Linux community.

Tinkering
Studies of scientifi c and technical work
have demonstrated the importance of
tinkering for science and engineering.
Knorr-Cetina (1979), for example, uses
‘tinkering’ to refer to practices in which
scientists make incremental and ad-hoc
changes in the material infrastructures
they use to accomplish scientifi c goals:
‘Doable’ work as tinkering is empha-
sized in Fujimura’s article “The con-
struction of doable problems in cancer
research” (Fujimura, 1987). In addition,
Norris says that “science is tinkery busi-
ness” (Norris, 1993). More specifi cally,
Nutch (1996) lays out a list of ‘modes’

associated with tinkering. Summariz-
ing these modes, they include: using ob-
jects designed for other purposes, creat-
ing research equipment from bits and
pieces found around the research site,
modifying available tools, instruments,
and equipment for coping with specifi c
emergencies or project contingency, and
saving time and money by construct-
ing a needed piece of equipment rather
than buying it through ‘conventional
channels’. These defi nitions of tinker-
ing describe it as a cognitively rich proc-
ess, one that forms a key aspect of expert
work. This is equally demonstrated in
anthropological analyses; in his eth-
nography Working Knowledge, Harper
(1992) uses the term to explain Willie, a
‘jack-of-all-trades’ auto mechanic, car-
penter, and metalworker in upstate New
York. Harper considers Willie “...fi rst as
a thinker: considering, reconsidering,
always with a view to what is available.”
(Harper 1992: 74)

Consequently, ‘tinkering’ stand out
as a practice that involves a specifi c re-
lationship between people and objects
mediated by ‘immediacy’ and contin-
gency. Tinkering is the accomplishment
of ‘doable’ work – doable in the moment,
making use of existing, rather than dis-
tant material resources. In other words,
tinkering is fi rst and foremost a practice
of using immediately available resourc-
es to accomplish accessible tasks.

This perspective on tinkering can be
witnessed in action on the LKML. For
example, when programmers on the
LKML say that they are ‘tinkering’ with
a section of the kernel code, we can un-
derstand that they are working directly
on the code itself, trying things out,
adding syntax or changing algorithms
in ‘real-time,’ quickly moving between
source code and compiled code. Here
are a few examples from the list itself:

85

...I was tinkering with zipslack this
time and attempted to mount my
slightly COD zip drive as umsdos.
Fine. Did an ls.....oops....seg fault....ls
stuck in D state.

... IMO, far too much tinkering of code
is going on currently without hard
data (other than ‘it looks good’), and
this is exacerbating the problems.

There are only two small behavioral
bug reports I have received at this
point, one of them looks like a bug
that was in our networking before I
began tinkering ;-)

Note that in these examples ‘tinkering’
and ‘tinker’ is always described in past
or future tense: ‘I was tinkering, ...too
much tinkering, ...who want to tinker,
I began tinkering...’. Thus tinkering is
only expressible on the list as something
that happens outside it – before or after
the expressive and denominational work
that is being done on the list itself. The
list itself is outside the bounds of tinker-
ing. We should remember however, that
while tinkering is about local contexts
and ‘doable’, material work, as a practice
it also involves engagement with think-
ing, refl ecting, and involves the media-
tion of representations.

Redesigning
Tinkering seems to stand in stark con-
trast to typical defi nitions of designing
and redesigning, understood as prac-
tices associated with more logical and
progressive types of work. In Engineer-
ing and the Mind’s Eye, Ferguson (1992)
traces the development of modern engi-
neering practice. He sees this develop-
ment as a move from the ‘direct design’
of the artisan (read: bricoleur or tinker-
er) to the ‘designing by drawings’ of the

modern engineer. In other words, while
both the artisan and the designer ac-
tively conceptualize and manipulate the
material world and therefore do design
work, only the latter engages with spe-
cifi cally formal tools for representing
the ongoing process. Ferguson is quick
to point out that these are “differences
of format rather than differences of con-
ception” (Ferguson 1992: 5). He goes on:

Usually, the ‘big’, signifi cant, govern-
ing decisions regarding an artisan’s or
an engineer’s design have been made
before the artisan picks up his tools
or the engineer turns to his drawing
board. These big decisions have to be
made fi rst so that there will be some-
thing to criticize and analyze. Thus,
far from starting with elements and
putting them together systematically
to produce a fi nished design, both the
artisan and the engineer start with vi-
sions of the complete machine, struc-
ture, or device. (Ferguson 1992: 5)

By characterizing the difference be-
tween artisan and engineering work as
based in the tools used to conceptualize
design, rather than the conceptual tools
used to materialize it, Ferguson does not
end up ‘primitivizing’ the artisan. Just
as the engineer analyzes and criticizes,
so does the artisan. The difference in
their work is linked to material differ-
ence rather than mental ability. Fergu-
son sees the work of designers as being
in the forms of the model, the blueprint,
and the formal drawing. The formaliza-
tion of design representations is in no
small part due to the need for greater
coordination of redesigning activity,
given the larger social contexts in which
it takes place.

Here we can see the important role
the LKML plays in providing the context

Matt Ratto

Science Studies 1/2007

86

for designing and redesigning practices.
Below are some examples where ‘rede-
signing’ is being used on the LMKL:

The one major downside, right now,
is that Henry and Richard et al, keep
talking about redesigning the klips
structure to fi t in with the more re-
cent kernels better (ala netfi lter,
maybe). They’ve announced some
design specs and I suspect that they
would rather see the newer version of
klips in the kernel tree than the crufty
version that we are hobbled with in
FreeSWAN right now.
This is a last ditch deal-with-evil safe-
ty net system that has a fairly good
chance of saving the data without ex-
tensively redesigning the whole sys-
tem. Never said it was perfect.

Now we get to the reason for this post.
Has anything changed for 2.4.x? With
release eminent, we don’t really want
to go through the redesign and im-
plementation if the architecture is dif-
ferent for 2.4.x.

In these examples redesigning is under-
stood as a practice that involves terms
such as ‘design specs’, ‘whole systems’,
and ‘architectures’. Further, redesign is
characterized as an ongoing practice,
facilitated by conversation on the list.
As something that occurs on and in the
LKML, the practice of redesign thus re-
quires representing the kernel in vari-
ous ways in the online forum.

Again, it is important to remember
that both tinkering and redesign work
involves the use of representations, and
that in both cases direct engagement
with the artifact to be worked is to a
greater or lesser extent ‘deferred’ while
representations of it take primary focus.
As noted above, in the case of redesign

these include design models, fl owcharts,
blueprints and similar formal forms;
tinkering on the other hand makes use
of less formal representations. This may
seem confusing, given that the main
representational form is the source code
that is being used in both tinkering and
redesigning practice.

Shared digital objects: code as artifact,
code as representation
Representations are used to mediate ac-
tivity in all reworking practices; what
differentiates the practices of tinkering
and redesign is not that representations
are used, but the purposes to which they
are put. In particular it is important to
address how software as both human-
readable source code, and as compiled
machine code, relates to the problems
of representation and thus the issue of
access.

Above I describe developer practices,
ranging from tinkering as ‘direct’, off-
list work on the kernel to redesign which
involves the deferral of this immediate
engagement with the kernel in favor of
re-presentation through the intermedi-
ary of the LKML. However, both tinker-
ing and redesign involves deferral. All
activity is, in a sense, mediated. Thus,
tinkering, like designing, is mediated
by a number of different aspects, which
include, but are not limited to mental
representations, norms, language, and
many other standards and tools. Differ-
entiating, then, between tinkering and
designing practices requires examining
more specifi cally the kinds of artifacts
and representations used at various
times by the developers, and focusing
more intently on how these artifacts im-
pact developers’ ability to engage in var-
ying degrees of ‘directness’ and ‘defer-
ral’. What I want to highlight here is the
different forms of mediation made pos-

87

sible by representations. That a tinkerer
uses a representation in one way while
a redesigner uses it in another means
that differing representational aspects
are highlighted and differing cognitive
processes are engaged, but more im-
portantly for questions of access, that
additional forms of distributed sharing
become possible. To better illustrate this,
let me turn to the nature of software as
artifact more generally, and more spe-
cifi cally, to its role in the development of
Linux.

Artifacts and representation: objects and
tools
As noted above, theories of human cog-
nition that seem applicable to issues of
access often place peoples’ relationships
with material or ‘mediating’ artifacts as
central. In Activity Theory, for example,
human actions are modeled as a trian-
gle (fi gure 1) where a subject’s goals are
made possible through the mediation of
tools.19 However, as noted above, Linux
kernel patches can be understood as
both the goal of work as well as a means
through which work takes place. While
creating source code is arguably one of
the main goals of work on the LKML,
source code also serves as a mediating
artifact for other goals, including the
teaching of new developers or the coor-
dinating of larger subsystems of Linux

– objectives that are key to the ongoing
coordinating aspects of the Linux com-
munity. Here it is important to distin-
guish between the kinds of tasks soft-
ware accomplishes and the multiple
ways it participates in different human
activities.

One way to consider software as a
tool is to see it as the means to particu-
lar ends. Figure 2 represents a typical
software as tool relationship, such as is
occuring now as I use word processing
software to write this article. This oc-
curs similarly in the case of the Linux
Kernel when I use Linux as the OS for my
computer (fi gure 3). In both these cases,
the source code, the human-readable
‘recipe’ of software, has been compiled
into a machine-readable form, made up
of object fi les containing ‘machine code’
the instructions that are actually being
executed on the computer hardware. Al-
ternatively, we can understand software
itself as the goal of work when develop-
ers work to maintain Linux, using appli-
cations such as text editors, and utilities
like ‘patch’ (see above) to trouble-shoot
and extend the Linux source code (fi g-
ure 4). In this case, in order for Linux to
work and operate as part of a computer
operating system, the source code patch
that was created must fi rst be compiled
into machine code before it can be ex-
ecuted on the computer and become a
tool as originally depicted in Figure 4.

Based on this explanation, we might
understand the distinction between
software as goal and software as tool
as predicated on whether or not it has
been compiled. That is, software is a
tool when it has been compiled into ma-
chine code, and software is the goal of
work when it is in a source code form.20
However, it is obvious that when source
code is being used as an example, the
source code itself is mediating the more

Figure 1: Activity Theory: mediating triangle.

Matt Ratto

Science Studies 1/2007

88

community-oriented activities, rather
than being merely the object of work. In
the Linux community, as in most cod-
ing groups, source code snippets and
patches are often used by developers to
ask questions and to illustrate correct
coding behavior (Ratto, 2005a: 9-11). In
these cases, source code is transformed
from something upon which work takes
place into a tool used to represent, ex-
pand upon, communicate, and trans-
form that work. It is safe to say that
while machine code is primarily used as
a tool, source code can be either a goal
or a tool – distinguishing between these
forms requires examining the practices
to which it is being put.

What differentiates machine code
and source code is merely the labor
and resources required to convert one
into the other – like the difference be-
tween ice and liquid water, the distinc-
tion between software as object or as
tool depends upon the moment when
it is being used, and the purposes to
which it is being put, rather then being
based on any formal distinctions. Activ-

Figure 2-4: Software as tool: Linux as tool;
Linux as goal.

ity theory describes this changing qual-
ity of artifacts as the ‘object-tool shift’
(Engeström, 1990) and notes that most
artifacts have a similar duality (Miettin-
en, 1998). A productive aspect of the Ac-
tivity Theory argument is that tools shift
into goals—become objects of attention
in their own right—when disturbances
and problems impact the planned work.

Turning to the study of scientifi c
practice, a similar quality of artifacts is
examined by Knorr-Cetina (1999; 2001)
in her analysis of the work of scientists.
Complementing Rheinberger’s (1997)
exploration of ‘epistemic things’ Knorr-
Cetina defi nes epistemic objects as,
‘…any scientifi c objects of investigation
that are at the center of a research proc-
ess and in the process of being materi-
ally defi ned’ (Knorr-Cetina, 2001:181).
These objects are productive because
of their ‘defi ning characteristic,’ they
have a ‘...changing, unfolding charac-
ter...lack of ‘object-ivity and complete-
ness of being.’ (Knorr-Cetina, 2001:181)
While Knorr-Cetina follows Activity
Theory in understanding artifacts—in
this case scientifi c objects insubstanti-
ated as material artifacts—as moving
between a stable ‘technical object’ and
mutable ‘epistemic object’ formation,
she identifi es this aspect to be a result of
the absences within them that have yet
to be discovered.21 As both Activity The-

89

ory and the concept of epistemic objects
suggest, such qualities of material arti-
facts are only captured in the activities
and practices of individuals and social
groups. It is only through a material en-
gagement with the artifacts in question
that their relevant ‘surplus’ qualities are
discovered and that their potentiality
for knowledge acquisition and commu-
nication are revealed.

Leaving aside the more theoretical di-
mensions of these arguments, how can
they help us better understand the work
of the Linux developers and, ultimately,
the work of distributed science and the
idea of access? First, we should note a
signifi cant difference between Activity
Theory’s Object-Tool shift, and Rhein-
berger and Knorr-Cetina’s descriptions
of epistemic – technical objects. Where-
as the latter focus most of their attention
on how epistemic objects are stabilized
and transformed into technical objects
as part of the process of scientifi c work,
Activity Theorists have tended to focus
on the ways technical tools are desta-
bilized and transformed into objects of
work when problems occur. It is therefore
vital not to confuse the binaries drawn
by both theories; epistemic objects are
not the same as the objects of work de-
tailed in Activity Theory, nor are Activity
Theory’s tools the same as Knorr-Cetina
and Rheinberger’s defi nition of techni-
cal objects. Both theories highlight sim-
ilar but ultimately different productive
qualities; the theory of epistemic ob-
jects reveals the ways in which the sur-
plus, unfolding qualities of the material
world generate knowledge, while Activ-
ity Theory focuses to greater extent on
the ways tools are generative of materi-
ally-productive work. This difference is
one of focus rather than a problematic of
the theories themselves – both theories
provide insight into why and how ob-
jects are transformed as part of working

practice. What connects both theories is
an emphasis on the movement between
two forms – how a stable tool becomes a
destabilized object, or how an unstable
epistemic object is transformed into a
stable technical form. However, what is
missing in the categorizations of both is
a way of differentiating between types
of artifacts and the specifi city of the
purposes to which they are put. In par-
ticular, both theories provide little pur-
chase for thinking about a key issue for
distributed communities, namely the
ways in which action is coordinated over
distance and over time. For this we must
turn to an older theory of artifacts, one
that provides a richer description of the
variety of the representational qualities
and purposes.

Wartofsky (1979) defi nes three classes
of artifacts: primary artifacts are those
used in material production and are
typically thought of as physically exist-
ing; secondary artifacts are understood
as representations of primary artifacts
whose purpose is the transmission and
preservation of existing modes of ac-
tion and beliefs; while tertiary artifacts
are considered ‘imaginative artifacts’,
representations that encourage the re-
imagining of current activity. In a sense
then, Wartofsky’s theory extends the bi-
nary relationships described in Activity
Theory and in scholarship on epistemic
objects, by differentiating between their
representational purposes. Wartofsky’s
theory provides a way of conceptualiz-
ing the three different aspects of Linux
software; compiled Linux software as
machine code can be categorized as
a primary artifact used to do material
work (i.e. to control computer hard-
ware,) whereas Linux source code acts
as both secondary and tertiary artifact,
as secondary when it is used to repre-
sent current and past actions, and as
tertiary when it is being used to extend

Matt Ratto

Science Studies 1/2007

90

and hypothesize about future activity.
Each transformation involves particular
kinds of individual and social resources
and, equally, provides different modes
of engagement for individual and social
work.

To return then to Ferguson’s defi ni-
tion of designing as engineer’s work on
blueprints and other physical artifacts
which ‘stand in’ for and ‘defer’ the ob-
ject being designed, we can character-
ize kernel development as requiring
all three; fi rst a primary artifact which
is the focus and outcome of work (e.g.
the compiled Linux kernel,) second-
ary artifacts that are used to reinforce
and maintain existing kernel coding
practice (source code snippets used as
pedagogical tools,) but also tertiary ar-
tifacts which are used to conceptualize,
represent and communicate new ways
of coding and novel directions for kernel
activity. Equally, we can now describe
tinkering activity as mostly involving
shifting between primary and second-
ary artifacts (the kernel and illustrative
source code snippets that help with im-
mediate programming needs,) whereas
redesigning requires greater coordina-
tion between secondary and tertiary ar-
tifacts (source code snippets being used
as illustrations for current activity and
also as articulations of future possibili-
ties.) An important reason for this dif-
ference is the greater need for coordina-
tion over longer periods of time entailed
by redesigning practices.

‘Tight’ and ‘Loose’ – moving from indi-
vidual to social conceptions of work
Above I noted how the Linux software
shifts between roles, to be both objects
of work and representations used to
exchange coding knowledge and com-
municate and transform practice. An
important aspect of the shift from pri-
mary to secondary to tertiary artifact,

and the corresponding movement from
tinkering to redesign practice, is that it
mostly takes place on the LKML, with-
in a community of other developers.
Therefore, an initial response might be
to characterize the movement to the
list as a movement from an individual-
istic process of work to a group process.
But tinkering, like all human activity, is
never fully an individual act. Symbolic
interactionism has pointed to the con-
cept of the ‘signifi cant other’ in order to
capture this (Mead and Morris, 1974),
Knorr-Cetina (2001) has expanded upon
Rheinberger’s (1997) defi nition of ‘epis-
temic things’ to address how they are
embedded in ‘epistemic cultures’, and
the notion of ‘activity’ in Activity Theo-
ry itself is predicated upon historically
(and thus socially) generated communi-
ties, norms, and rules. While it should
be noted that in this last tradition, the
separation between ‘practice’ and ‘ac-
tivity’ is based upon the extent to which
the work being described is more or less
social, more or less inherently within a
community, maintaining this separa-
tion is often quite diffi cult. Becker (1982)
points to the diffi culty in seeing any
human work as singular. In one exam-
ple, Becker demonstrates the sociality of
Van Gogh’s painting (a seemingly whol-
ly individualistic act) by articulating the
work of others to provide the paint, the
brushes, and the canvas. In one sense,
then, each brush stroke, each daub of
color can be described as a social activ-
ity. While it is ridiculous to describe Van
Gogh’s involvement in the painting of
‘Starry Night’ as equivalent to that of his
brush-maker, it is important to acknowl-
edge this more minor participation as
legitimate and effectual. While it is pos-
sible that the participation of such-and-
such brush-maker may not be indica-
tive of a unique contribution (Van Gogh
could possibly choose other brushes

91

and other makers with impunity,) Van
Gogh’s access to tools must have an ef-
fect on the ultimate result of his work.
Such a perspective is thus in line with
the previous problematization of the no-
tion of direct engagement. Just as work
is never truly ‘direct’, it is also never only
‘individual’.

How can we then characterize the
shift we want to describe, from tinker-
ing sorts of work to design practice? An
alternative is to examine the organiza-
tional ‘style’ of tinkering and redesign,
using the terms ‘tight’ and ‘loose’ rather
than ‘individual’ and ‘group’ work. Such
a shift in naming focuses on the differ-
ent organizational and communica-
tive needs of workers in these differing
contexts, rather than positing this dif-
ference as based in the problematic and
unrefl ective assumptions about human
activity noted above. ‘Tight’ and ‘loose’
have long been used by engineers to
characterize technical systems. More re-
cently, Charles Perrow (1999) uses them
to refer to differing organizational qual-
ities of socio-technical infrastructures
– aggregations of people, communities,
and artifacts.

Using this nomenclature, tinkering
is a more tightly organized and stable
practice, characterized by a coherence
of time and place. It is not that tinker-
ing is organized from ‘above’ or that its
rules are more explicit or formal – quite
the contrary. Instead, the organiza-
tion of the practice of tinkering is often
‘self-organized’ and results in a coher-
ent set of relations between the people
involved, driven, to be sure, by the si-
multaneous nature of the communica-
tions between them. In fact, tinkering
work mostly takes place within and by
groups of closely temporally connected
workers. Although these relations may
change from location to location and
from context to context, for the moment

of the tinkering practice they remain
stable.

What the move to the list entails is
thus a move away from the organiza-
tionally more ‘tightly’ connected tinker-
ing work, and towards a more ‘loosely’
organized development effort. However,
the term ‘loose’ should not be taken to
mean that the rules, positions, or stand-
ards of the group are haphazardly decid-
ed or enforced. Instead, ‘loose’ indicates
a spatial as well as a temporal distance
between rules and enforcement, deci-
sion and adoption, tests and results. To
use the metaphor of a rope, it is not that
the knots are loosely tied, but that they
are distantly spaced apart. Such spacing
results in a sort of ‘wiggle-room’ that al-
lows for different sets of problems—and
different kinds of solutions—to arise
within the groups involved. This is made
more clear by the following use of the
term on the LKML:

The real question is why can’t we just
open 2.5 and only fi x the VM to start
with? Leave the kernel at 2.4.1pre10
and possibly use the -ac VM code
(which has diverged from mainline),
and leave people (Alan, Ben, Marcelo,
et. al.) who want to tinker with it in
small increments and do the drastic
stuff in 2.5.

The key point here is that tinkering in-
volves leaving people alone and allow-
ing them to work with the shared objects
in smaller increments. Tight contexts,
then, are characterized by self-organiza-
tion and stable relations among groups
who are working in close temporal, if
not geographical alignment.

Thus, while tinkering can be under-
stood as a practice more tightly organ-
ized by space and time, redesigning,
particularly in view of the whole collec-
tive of Linux development, can be seen

Matt Ratto

Science Studies 1/2007

92

as a more loosely organized process. The
‘looseness’ of the development process
is often revealed when people on the list
talk about ‘redesigning’.

...That being so I’d like to run my cur-
rent thoughts for redesigning the ppp
support in the Linux kernel past peo-
ple on this list.

...I suppose you could argue that re-
designing Linux every few years is
innovation, but unfortunately it’s the
same cast of characters doing it, so its
not very innovative.

Redesigning can thus understood as a
practice that requires certain kinds of
consensus in order for its results to be ac-
cepted and used. Equally, this consensus
can only be reached through communi-
cative practices that involve large-scale
decisions that must be agreed-upon by
the relevant members of the LKML com-
munity. Unlike tinkering, where more
informal and short-term agreements are
suffi cient, redesign requires agreements
that last over longer periods and involve
less coherent organizational contexts.

Access to distributed work
as ‘double-shift’
The activities of Linux development are
various and complicated. However, two
aspects stand out even in this brief anal-
ysis: fi rst, that development activity re-
quires the ability to shift between code
as an object of work and code as repre-
sentation, and second, that this shift is
made necessary by the need to commu-
nicate and share work within the con-
fi nes of the LKML. Therefore, access to
Linux development, at least in so far as
this includes the ability to contribute
and make use of the shared resources
of the development effort, requires two
conjoined shifts; a shift from the ‘tight’

temporal organization of tinkering work
to the ‘loose’ organization of redesign-
ing, and a corresponding shift in the
objects and representations involved.
However, it is important here to note
that not all Linux development activ-
ity requires all these shifts, nor do the
practices of tinkering and redesigning
outlined in this paper subsume all pos-
sible reworking practice. My goal here is
not to describe the totality of develop-
ment practice, rather this extended con-
versation is intended to create a work-
ing practice-model of access that will
provide insight into the ways in which
participation is mediated in collabora-
tory environments. In order to add addi-
tional detail and turn the more theoreti-
cal conversation into something more
concrete, in the section below I use the
above concepts to draw out a chart of re-
working practice.

III. Experiment: charting the practices
of Linux kernel developers

The diagram (fi gure 5) visually repre-
sents the concepts explored above in
order to make them more applicable to
problems of access. The X axis represents
the three modes of artifact described by
Wartofsky, while the Y axis describes the
two extremes of organizational qual-
ity. I place the two reworking practices,
tinkering and redesigning, on a third, Z,
axis, with tinkering being linked most
closely with primary artifacts within a
tight contexts, and redesigning being
focused on tertiary artifacts in a loose
context.

What insights are possible by viewing
Linux kernel development on this fi eld?
To return to an example previously men-
tioned, I will detail some of the steps in-
volved in a successful patching project.
While this is a relatively limited descrip-
tion of the complexity of shared devel-

93

opment, these steps, and the kinds of
practices and objects that are required,
are illustrative of the more complex ac-
tivities of Linux development.22

In the example briefl y described in
section II, the patch author (A) began by
posting an introduction and his patch to
the LKML:

(A)This is the fi rst public release of my
libata compatible low level driver for
the Marvell SATA family. Currently
it successfully runs in PIO mode on
a 6081 chip. EDMA support is in the
works and should be done shortly. Re-
view, testing (especially on other fl a-
vors of Marvell), comments welcome.
 (code continues…)23

Immediately, the subsystem organ-
izer (B) states his willingness to put the
patch ‘upstream’, meaning to move the
related source code into the offi cial ker-
nel source tree. However, before this can
happen, other developers (C & D) begin
testing and extending the patch, explor-
ing how it works and, in conversation
with the original developer (A), attempt-
ing to solve problems:

(B) Even though it’s only PIO, if you
feel this is stable, I would like to
get it into upstream soonish. Current
version looks OK to me.
(C) (Quotes source code, using it to
demonstrate problem.)

(A) Some (non-functional) cleanup
modifi cations since the version 0.10
driver I sent out 2005-08-30. (code
follows).

(D) First of all, thanks! I’ve been wait-
ing for such a driver to appear…All
tests are with the UP kernel. The
hardware is an Asus PSCHSR-A board
with Adaptec AIC8110 (code snippets
and explanation of attempted actions
and problems follow)…

In this process, sections of the patch
code are referenced and rewritten, posts
go back and forth between develop-
ers, and a new, slightly changed patch
emerges. This shift is presented in the
fi gure 7:

Soon after this, another developer
(E) posts some suggested changes to
the patch code, including the following
statement:

(E) please don’t include ‘scsi.h’ in new
drivers. It will go away soon.
Use the <scsi/*.h> headers and get rid
of usage of obsolete constructs
in your driver.

This comment refers to the appropriate
way to reference (e.g. ‘include’) other
sections of kernel source code in the
routines of the patch. It begins a larger
conversation, with the subsystem main-
tainer (B) rejecting this comment and
saying that the original coding syntax is
correct:

Figure 5: Diagramming tinkering and re-
working, the artifacts involved, and the or-
ganizational context.

Matt Ratto

Science Studies 1/2007

94

(B) It [the scsi.h include] stays until
the rest of the libata drivers lose the
include.
After ATAPI support is done, I can
stop 2.4.x support, and this and
several other compatisms will go
away.

Here, the subsystem maintainer (B) is
referring to future needs and directions
in the community, stating explicitly that
the scsi include needs to stay until other
coding work is accomplished. This con-
versation continues for a few more posts,
with the subsystem maintainer (B) and
the critical developer (E) debating is-
sues of future direction of coding effort
in the community and organizational
responsibility, each using code from the
original patch to illustrate their points.
Ultimately a decision is reached regard-
ing the patch and it is incorporated into
the larger code tree.

The two shifts depicted in fi gures
6 and 7 are driven by the need to over-
come a lack of relational coherence be-
tween organizational contexts and the
concomitant transformation that must
occur in the objects and representations
of work. The fi rst shift occurs because of
the need to reconceptualize and com-
municate the action and artifact by re-

Figure 6: Chart of fi rst shift, from primary
to secondary artifact, from tighter to looser
organizational context.

representing it in a larger context. In this
case, the mental or informal representa-
tions associated with tinkering practice
in a tight context are not enough and
must be supplemented with more de-
ferred representations. This makes pos-
sible the incorporation of others into the
problem, a shift to a more loosely organ-
ized context, and the movement from
primary to secondary artifacts (1st shift).
While the more pragmatic problem is
solved at this stage, e.g. the patch code is
extended and fi xed, a new issue occurs,
namely, the relationship between the
current code and current coding behav-
ior and how these relate to larger sec-
tions of source code and future needs.
This engenders another shift, from the
patch code as a secondary artifact used
to represent current behavior and needs,
into a tertiary form where it is used to
describe and convince others of the
need for other, future-oriented changes,
in an even wider (looser) organizational
context, (2nd shift).

Ultimately, the patch fi le is included
in the offi cial network subsystem fi le
tree indicating a successful ‘redesign’
of both the patch code and the Linux
kernel. This occurs because of the suc-
cessful navigation of the full Z axis line
of reworking practice, including both

Figure 7: Chart of second shift, from sec-
ondary to tertiary artifact, and from loose to
looser organization context.

95

tinkering and redesigning modes of en-
gagement. What makes this movement
possible are two corresponding ‘double-
shifts’, the movement between tight and
loose contexts, and the transformation
of the source code patch between pri-
mary and secondary, and secondary to
tertiary forms.

The above analysis reveals that the
ability to shift between the types of ac-
tivities and forms of artifacts is essential
to the ongoing nature of Linux devel-
opment. Further, the analysis indicat-
ed that one reason for the necessity of
shifting had to do with the coherence or
discontinuity of the artifacts involved in
the work. This latter aspect was indica-
tive of the complex artifactual ground
upon which the work took place. Key
aspects of the expertise of the Linux de-
velopers involved their ability to both
shift Linux from being a tool to being an
object of work itself and to navigate be-
tween Linux source code as example of
current activity, and as a vision of future
needs. Equally, this shift also involves
a shift from a tightly-coupled organi-
zational context to the distributed and
loosely-coupled space of the LKML. Fo-
cusing in on the two ‘double-shifts’ de-
scribed above can thus provide a way of
understanding successful or unsuccess-
ful attempts at access.

IV. Relevance for Cyberinfrastructure
and e-science

At the start of this article I made the
claim that static models of access are
less useful for examining and diagnos-
ing issues with distributed scientifi c
work than a more dynamic model that
focuses on the working practices of the
scholars and scientists and the artifacts
with which they engage. I described cur-
rent models as conceptualizing access
as a series of preconditions that must

be met in order for individuals or social
groups to be able to ‘reach’ that which is
to be accessed. Such preconditions in-
clude managerial, economic, technical,
and social factors, each of which must
be addressed and considered when ac-
cess problems emerge. Seen in this light,
access and more importantly, access
problems, are understood as evoking a
series of hurdles or gates, which must
be overcome in order to make resources
available.

Using the Linux kernel development
effort as a exemplar of distributed, on-
line work, I traced what an alternative,
more dynamic model of access might
reveal, simultaneously redefi ning the
contexts and artifacts of such work in
order to call attention to the specifi city
of activities and their related objects and
tools. The resultant model conceptual-
izes access in distributed contexts as
requiring the resources to manage two
‘double-shifts’. The fi rst double-shift in-
volves moving from tight to more loosely
organized contexts of activity and a cor-
responding shift in the object of work
from a primary to a secondary form, e.g.
from an artifact used to do work to a rep-
resentation used to convey current ac-
tivity. The second double-shift involves
a further move to even more loosely or-
ganized contexts (particularly in regards
to time), and a corresponding shift from
secondary to tertiary form, e.g. from an
artifact used to represent current activ-
ity, to one used to describe and visualize
future needs.

These shifts, then, provide a novel
way of understanding the issue of ac-
cess, particularly in regards to contexts
that involve the ‘socio-spatial expan-
sion’ of the object of work (Engeström,
2001). The joint development of the
Linux kernel, accomplished via the dis-
tributed form of the LKML, is a good ex-
ample of such a phenomenon. However,

Matt Ratto

Science Studies 1/2007

96

as described in the introduction to this
paper, more and more scientifi c and
scholarly work is being done in a simi-
lar, distributed manner.24 This has also
been remarked on by Knorr-Cetina in
her explorations of ‘epistemic objects’
noted above. Access as practice, specifi -
cally in the context of expert, distributed
work, can thus be analyzed as the ability
to link complex representations in both
concrete and abstract spaces to the ob-
jects that they refer to, and, additionally,
to leverage the use of these representa-
tions in various organizational contexts.
An analysis of the material tools and
communicative rules can provide ways
of examining and diagnosing problems
of access. Moreover, examining how in-
dividuals shift from ‘tight’ to ‘loose’ or-
ganizational contexts (rather than from
individual to group work) and from con-
ceptual to material models (rather than
from concrete to abstract thinking) can
provide insight for scholars working
to better understand how distributed,
shared, and collaborative resources are
managed. For cyberinfrastructure, e-
science, and e-scholarship in particular,
two main insights are important.

First, the practice-based model of
access described above makes clear
that supporting distributed scientifi c
or scholarly work requires supporting
activities in both local and distributed
contexts, e.g. both online and offl ine,
but also requires assisting scientists and
scholars in transitioning between these
two modes of work. Pragmatically this
means that in addition to developing
online archives or databases, and offl ine
applications and analytic tools, e-sci-
ence developers should think explicitly
about how users will track and represent
the work they do in local spaces as well
as in shared online spaces. Being able
to communicate to others in the dis-
tributed context what has been done lo-

cally and in the past is a key element of
shifting between ‘tight’ and ‘loose’ work
contexts.

Second, and more importantly, this
model of access demonstrates that at-
tention to the objects of work them-
selves and the ways in which they are
represented in online spaces is of para-
mount importance. Such an insight is
empirically made in Beaulieu’s analysis
of digital databases on brain imagery
(Beaulieu, 2004) and is also explored in
work on bio-informatics and analyses
of molecular biology and genetics, (e.g.
Thacker, 2004; 2005; Ratto, 2006; Ratto
and Beaulieu, 2007). These analyses
make clear that in biological work in
which digital information plays a key
role, the relationship between digital
representations as both tools for work
and objects upon which scientists work,
and the supposed real-world referents
that make such work meaningful, are
far from obvious.

However, the argument of this paper
extends previous work by exploring how
artifacts are used to represent future
needs and behaviors. What the rework
of the Linux kernel developers makes
clear is that it is not just a relationship
between the Linux kernel as compiled
‘tool’ (the ‘real-world’ referent in this
case) and the kernel source code (rep-
resentational ‘object of work’) that is at
stake, but that relationships between
various representational forms must
also be negotiated. In other words, it is
not just that the kernel as operational
software is linked to its online depiction
as source code, but that the relation-
ship between online and offl ine repre-
sentations of the kernel as source code
must also be negotiated, in particular
when the code is used to depict or rep-
resent future needs and decisions. One
of the most important tasks for people
involved in joint, distributed work is to

97

negotiate not just how inscriptions or
scientifi c representations act as mimetic
depictions of some real-world referent,
but also how representations are related
to each other. That the multiplicity of
modes of engagement between scientifi c
representations is of particular interest
is demonstrated by recent work in the
philosophy of science on representation,
instrumentation, and modeling that de-
scribes its more practice-based and ac-
tive nature (e.g. Morgan and Morrison,
1999; Radder, 2003; Knuuttila, 2005) and
notes in particular, the complexity of
mediational activity involved.

Such an insight belies the more gen-
eral trend in e-science and cyberinfra-
structural development to sublimate the
different scholarly and scientifi c objects
under the more general rubric of ‘data’
and to focus on the similarities rather
than the differences in scientifi c and
scholarly practice. (Atkins, 2003). What
the above model tries to make clear is
that attention to the variety of scientifi c
and scholarly practices and representa-
tional modes involved in doing distrib-
uted science is required. Such an insight
follows from the more ethnographic ori-
ented analyses of e-science (e.g. Hine,
2006), case study-based research (e.g.
Edwards et al., 2007), as well as theoreti-
cal explorations (e.g. Wouters and Beau-
lieu, 2006; Schroeder and Fry, 2007). In
other words, while it is true that when
scientifi c and scholarly objects are
transformed into data they do tend to
look the same, understanding how the
data objects are transformed into vari-
ous types of artifacts as part of the nego-
tiation of tight and loose organizational
contexts, over space and across time, is
of paramount important when design-
ing, maintaining, and using distributed
systems. Access to distributed contexts
and the issues of coordination this en-
tails remains a problem for e-science

(Cummings and Kiesler, 2005; Sonnen-
wald, 2006, as cited in Schroeder and
Fry, 2007: 8). Overcoming these issues
requires attention to how the artifacts
involved in scientifi c work are part of
the processes of coordination that make
joint activity possible.

Conclusion

In this paper I used a longer-term dis-
tributed work process, that of Linux ker-
nel development, as a case for exploring
how access is productively negotiated,
ultimately developing a chart of rework-
ing that serves as a model for distributed
access. This exploration involved four
aspects; fi rst, suggesting that FLOSS de-
velopment provides an interesting view
into distributed scientifi c and techno-
logical work in terms of joint, materi-
ally mediated practices of re-working.
Second, defi ning a spectrum of re-work-
ing practices and noting the tools and
objects of work that are required and
created by these practices. Third, trac-
ing out how digital objects served as
both tools, objects, and as visions of a
desired future. Fourth, describing the
artifactual and contextual ‘double-
shifts’ that are required to participate in
shared, distributed work. Since science
involves, as Latour (1987) has famously
stated, the movement of inscriptions, a
focus on the materialized representa-
tions of scientifi c work seems necessary,
particular in cases of mutable, digital
representations.

Studies of traditional scientifi c prac-
tice, such as those of Rheinberger and
Knorr-Cetina described earlier, have
examined the context of the laboratory
and concentrated on the ways scientifi c
representations are made to stand in for
the objects they purport to represent,
including, but not limited to real-world
phenomenon and the results of scien-

Matt Ratto

Science Studies 1/2007

98

tifi c apparatus. Science in a distributed
context is equally based on representa-
tion and inscription but seems to put
even more pressure on the ways repre-
sentations as epistemic objects in and of
themselves, carry with them the forms
and modes of engagement seen as ap-
propriate for the communities involved
in their construction and extension. If
Linux is any kind of example, the explo-
sion of artifactual shifting and transfor-
mation that digitality encourages be-
comes a focal point for addressing issues
of access to resources in these contexts.
However, artifacts do not (normally)
transform themselves, but are manipu-
lated by individuals within these com-
munities according to need. Examining
how people within distributed com-
munities rely on artifacts to shift from
tightly to loosely coordinated activity,
and from immediate to future-oriented
work, requires better understandings of
how artifacts themselves act as central-
izing resources for accomplishing mate-
rial goals, help organize training, edu-
cation, and normalization of commu-
nity behavior, and also act as visions for
future directions and possibilities. What
makes science in distributed cyberin-
frastructures ‘accessible’ is the ability to
engage with the objects and artifacts of
this work in all their various guises.

Acknowledgements

I would like to thank Tarleton Gillespie,
Sampa Hyysalo, Tarja Knuuttila, and the
anonymous reviewers for their detailed
notes and advice. In addition, Chandra
Mukerji, Yrjö Engeström, Anne Beauli-
eu, and Paul Wouters gave comments on
early drafts.

Notes

1 I realize that the strategic importance
of naming can not be underrated, par-
ticularly given the somewhat conten-
tious nature of arguments about credit
in regards to the Linux operating system
and the role of previous coding efforts
in its creation. (e.g. GNU.) However, to
emphasize clarity I use the term ‘Linux’
to refer to only the kernel software, one
part of an overall operating system. To
refer to the full operating system based
on the Linux kernel I use the phrase
‘Linux operating system.’

2 LKML archive online at http://www.
ussg.iu.edu/hypermail/linux/kernel/

3 From WordNet lexical database. Online
at htto://wordnet.princeton.edu/

4 Estimate at The Linux Counter (http://
counter.li.org/) February 8, 2005

5 The GPL enforces two main values of
free/open source software (F/OSS) de-
velopment. First, every program dis-
tributed under the GPL must include
the underlying source code that makes
it work. Second, and related to the fi rst
condition, the GPL requires that users
be allowed to use the available source
code to extend the original program or
to create their own projects. A caveat to
this agreement is that developers who
make use of GPL source code must, in
turn, also release the results under the
GPL.

6 The term ‘kernel’ refers to the central
component of an operating system, typi-
cally tasked with managing the relation-
ship between hardware and software
resources, with coordinating ongoing
processes, and with managing access to
memory. For more detail, see the wiki-
pedia entry at http://en.wikipedia.org/
wiki/Kernel_%28computer_science%29

7 This number, and the start-up date of
1991, both refer to the development of
the Linux kernel, the ‘heart’ of the over-
all Linux OS. Calculating the complete
size of the Linux OS is impossible, given
the number of various parts of the OS

99

that are customized for different types
of computer hardware, different pur-
poses, and different users.

8 Although an article in the August 2003
issue of ComputerWorld magazine cred-
ited Linux with achieving a comparative
‘user-friendliness’ with Windows XP
(Blau, 2003).

9 Posted to info-mini@udel.edu; from:
Linus Benedict Torvalds; subject: Free
Minix-like kernel sources for 386-AT.

10 Subject: The direction Linux is taking;
Date: 2001-29 23:33:29 (LKML).

11 For more information about the patch
utility, see http://www.fsf.org/software/
patch/patch.html.

12 One of Eric Raymond’s rules for open
source software development. He calls
it ‘Linus’ law’ based on his understand-
ing of Linux development practice. (Ray-
mond, 2001).

13 Linux kernel version 2.6.20, released on
4 Feb 2007, is estimated to contain over
3.5million source lines of code or SLOCs.
(http://widefox.pbwiki.com/Kernel%20
Comparison%20Linux%20vs%20Windo
ws, accessed 21/03/2007).

14 From ‘Best practices for working with
open-source developers’, Ch.19 in (Ray-
mond, 2003).

15 Subject: [PATCH 2.6.13] Marvell SATA
support (PIO mode); Date: Aug. 30, 2005.
(LKML).

16 Subject: Telecom Clock driver for
MPCBL0010 ATCA compute blade; Date:
Aug 30, 2005. (LKML).

17 For more on this notion and particular
papers about it, see online at http://
www.isrl.uiuc.edu/~gasser/dcp/ and
http://www.limsi.fr/WkG/PCD2000/in-
dexeng.html.

18 In addition to emphasizing the interac-
tive aspects of technology design, schol-
ars have noted that this work does not
end in the laboratory or design studio.
Users, in the moment of application, also
productively work to ‘re-invent’ technol-
ogies in order to fi t them to the context as
well as the task. (e.g. Rice & Rogers, 1980;
Rogers, 1995). Von Hippel has described
‘lead users’ as early adopters who active-

ly defi ne possible uses as well as rede-
fi ne and customize new technologies for
novel purposes. (Von Hippel, 1984; 1994;
2001). Victor and Boynton have used the
term ‘co-confi guration’ to point to busi-
ness processes predicated on close rela-
tionships between producers and users
of commodities where the lines between
the two are partially blurred. (Victor &
Boynton, 1998). Finally, closer to home,
Silverstone and Hirsch’s edited volume
uses the term ‘domestication’ to de-
scribe how the meanings and purposes
of technologies are constructed (partic-
ularly in the context of the home) with
the participation of users. (Silverstone &
Hirsch, 1994; Berger et al., 2006).

19 For an overview of Activity Theory, its
origins and recent developments, see
The Center for Activity Theory and De-
velopmental Work Research at the Uni-
versity of Helsinki’s introduction, online
at http://www.edu.helsinki.fi /activity/
pages/chatanddwr/chat .

20 Such distinctions are made more com-
plex by what happens when running
software through debuggers and in-
struction set simulators, just-in-time
compiling and software script execu-
tion – all processes that do not involve
clearly separate coding and compiling
steps, that blur the relationship between
source code and machine code.

21 This point has also been made by Rhein-
berger, most recently in response to a
critique by David Bloor (Bloor, 2005).
In his response, Rheinberger wishes to
make clear that the potentiality of tech-
nical objects to shift into epistemic ones
is based not on their referential quali-
ties, e.g. how their various character-
istics might be named and described,
but based on their surplus, their ‘mate-
rial transcendence’ (Rheinberger, 2005:
406), how they exceed naming. Epistem-
ic objects resist being turned into stable
technical objects, what Activity Theory
calls ‘tools’, “…by virtue of their prelimi-
narity, of what we do not yet know about
them, not by virtue of what we already
know about them.”

Matt Ratto

Science Studies 1/2007

100

22 For a more nuanced examination of the
fi xing of bugs in an FLOSS community, see
Sandusky & Gasser, 2005. For a brief out-
line of a possible method for automating
the complex analysis required to under-
stand how bugs are described, tracked,
and resolved in FLOSS work, see Ripoche
& Gasser, 2003.

23 Subject: [PATCH 2.6.13] Marvell SATA
support (PIO mode); Date: Aug. 30, 2005.
(LKML).

24 For specifi c case study examples, see
Wouters & Schröder, 2003; Hine, 2006;
more details on this general trend, see
Wouters and Beaulieu, 2006; Thouten-
hoofd and Ratto, 2007.

References

Arzberger, P., Schroeder, P., Beaulieu, A.,
Bowker, G., Casey, K., Laaksonen, L., et
al.
2004 “Promoting access to public re-

search data for scientifi c, eco-
nomic, and social development.”
Data Science 3: 135-152.

Atkins, D. E.
2003 National Science Foundation Blue

Ribbon Advisory Panel on Cyber-
infrastructure (2003), Revolutio-
nising science and engineering
through cyberinfrastructure:
Report of the National Science
Foundation Blue Ribbon Adviso-
ry Panel on Cyberinfrastructure.
http://www.nsf.gov/cise/sci/re-
ports/atkins.pdf

Beaulieu, A.
2004 “From brainbank to database: the

informational turn in the study of
the brain.” Studies in History and
Philosophy of Biological and Bio-
medical Sciences. 35, 2: 367-390.

Becker, H. S.
1982 Art worlds. Berkeley: University

of California Press.
Benkler, Y.
2002 “Coase’s Penguin, or, Linux and

the nature of the fi rm.” YALE L. J.,
4.03: 112.

Berger, T., Hartmann, M., Punie, Y., &
Ward, K. J.(Eds.)
2006 Domestication of Media and

Technology. Maidenhead, UK:
Open University Press.

Blau, J.
2003 “Study: Linux nears Windows XP

usability.” ComputerWorld, Au-
gust 04, 2003.

Bloor, D.
2005 “Toward a sociology of epistemic

things.” Perspectives on Science
13, 3: 285-312.

Bowker, G.
2000 “Biodiversity datadiversity.” So-

cial Studies of Science, 30, 5:
643-684.

Brooks, F.P.
1975 The Mythical Man-Month: Essays

on Software Engineering. Read-
ing, MA: Addison-Wesley.

Casey, K.
2003 “Issues of electronic data ac-

cess in biodiversity.” Pp. 41-64 in
Wouters & Schröder (Eds.), Prom-
ise and Practice in Data Sharing.
Amsterdam: NIWI-KNAW.

Cole, M.
1985 “The zone of proximal develop-

ment: where culture and cogni-
tion create each other.” Pp. 146-
161in Wertsch (Ed.), Culture,
Communication and Cognition.
Cambridge: Cambridge Univer-
sity Press.

1996 Cultural Psychology: A Once and
Future Discipline. Cambridge,
Mass.: Belknap Press of Harvard
University Press.

Coleman, E. G.
2005 The Social Construction of Free-

dom in Free and Open Source
Software: Hackers, Ethics and the
Liberal Tradition. Doctoral dis-
sertation, Department of Anthro-
pology, University of Chicago.

101

Collins, H.
1987 “Expert systems and the science

of knowledge.” Pp. 329-348 in Bi-
jker, Hughes & Pinch (Eds.), New
Directions in the Social Study of
Technology. Cambridge, Mass.:
MIT Press.

Cummings, J. & Kiesler, S.
2005 “Collaborative research across

disciplinary and institutional
boundaries.” Social Studies of
Science 35, 5:703-722.

Edwards, P., Jackson, S., Bowker, C. &
Knobel, C.
2007 Understanding Infrastructure:

Dynamics, Tensions, and Design.
Report of a Workshop on History
and Theory of Infrastructure:
Lessons for New Scientifi c Cyber-
infrastructures. January 2007.

Eklund, S., Feldman, M., Trombley, M., &
Sinha, R.
2002 Improving the Usability of Open

Source Software: Usability Test-
ing of StarOffi ce Calc. Paper
presented at the Conference on
Human Factors in Computer Sys-
tems (CHI 2002), Minneapolis,
MN.

Engeström, Y.
1987 Learning by Expanding. Helsinki:

Orienta-Konsultit.
1990 “When is a tool? Multiple mean-

ings of artifacts in human activ-
ity.” Pp. 171-195 in Engeström
(Ed.), Learning, Working and
Imagining: Twelve Studies in Ac-
tivity Theory. Helsinki: Orienta-
Konsultit Oy.

2001 “Expansive learning at work:
toward an activity theoretical
reconceptualization.” Journal of
Education and Work, 14, 1: 133
- 156.

Ferguson, E. S.
1992 Engineering and the Mind’s Eye.

Cambridge, Mass.: MIT Press.

Fry, J.
2003 “The cultural shaping of schol-

arly communication on the Web:
a case study of corpus-based lin-
guistics.” Paper presented at the
Digital Resources in the Humani-
ties 2003, Cheltenham, England.

Fujimura, J.
1987 “The construction of doable prob-

lems in cancer research.” Social
Studies of Science 17: 257-93.

Gasser, L., Scacchi, W., Penne, B. & Ri-
poche, G.

2003 Understanding Continuous De-
sign in F/OSS. Proceedings of
the 16th International Confer-
ence on Software & Systems En-
gineering and their Applications
(ICSSEA-03).

Ghosh, R.A.
1998 “Cooking pot markets: An eco-

nomic model for the trade in free
goods and services on the Inter-
net.” First Monday, 3, 3. http://
w w w.f irstmonday.org/issues/
issue3_3/ghosh/index.html.

Glaser, B. G. & Strauss, A. L.
1967 The Discovery of Grounded The-

ory: Strategies for Qualitative Re-
search. Chicago: Aldine.

Glaser, B. G.
1992 Basics of Grounded Theory Anal-

ysis: Emergence vs. Forcing. Mill
Valley, Ca.: Sociology Press.

Goldenberg-Hart, D.
2004 “Libraries and changing research

practices: a report of the ARL/
CNI Forum on e-research and cy-
berinfrastructure.” Association of
Research Libraries (ARL), 237:1-5.

Hakken, D.
1999 Cyborgs@Cyberspace? An Eth-

nographer Looks at the Future.
London: Routledge.

Matt Ratto

Science Studies 1/2007

102

Harper, D. A.
1992 Working Knowledge: Skill and

Community in a Small Shop. Ber-
keley: University of California
Press.

Himanen, P.
2001 The Hacker Ethic and the Spirit of

the Information Age. New York:
Random House.

Hine, C. (Ed.)
2006 New Infrastructures for Knowl-

edge Production: Understanding
E-Science. Idea Group.

Houghton, J. W., Steele, C., & Henty, M.
2003 Changing Research Practices

in the Digital Information and
Communication Environment:
Department of Education, Sci-
ence and Training (Australia).

Hutchins, E.
1995 Cognition in the Wild. Cam-

bridge, Mass.:MIT Press.
Kelty, C. M.
2001 “Free Software/Free Science.”

First Monday, 6(12), http://fi rst-
monday.org/issues/issue6_12/
kelty/index.html.

2005 “Geeks, recursive publics, and
social imaginaries.’ Cultural An-
thropology 20, 2: 185-214.

Kollock, P., & Smith, M. A.
1999 Communities in Cyberspace.

London, New York: Routledge.
Knorr-Cetina, K.
1979 “Tinkering toward success: pre-

lude to a theory of scientifi c
practice.” Theory and Society 8:
347-376.

1999 Epistemic Cultures: How the Sci-
ences Make Knowledge. Cam-
bridge, Mass.: Harvard University
Press.

2001 “Objectual practice.” Pp. 175-
188 in Knorr-Cetina, v. Savigny
& Schatzki (Eds.), The Practice
Turn in Contemporary Society.
London: Routledge.

Knuuttila, T.
2005 Models as Epistemic Artefacts:

Toward a Non-Representational-
ist Account of Scientifi c Repre-
sentation. Tarja Knuuttila. Aca-
demic Dissertation, University of
Helsinki.

Latour, B.
1987 Science in Action: How to Follow

Scientists and Engineers through
Society. Cambridge, Mass.: Har-
vard University Press.

Lave, J. & Chaiklin, S.
1993 Understanding Practice: Per-

spectives on Activity and Con-
text. Cambridge, New York: Cam-
bridge University Press.

Lave, J. & Wenger, E.
1991 Situated Learning: Legitimate

Peripheral Participation. Cam-
bridge, New York: Cambridge
University Press.

Lin, Y.
2004 Hacking Practices and Software

Development: A Social Worlds
Analysis of ICT Innovation and
the Role of Free/Libre Open
Source Software, Dissertation,
University of York, September
2004.

Mead, G. H., & Morris, C. W.
1974 Mind, Self, and Society: From the

Standpoint of a Social Behavior-
ist. Chicago: University of Chica-
go Press.

Miettinen, R.
1998 “Object construction and net-

works in research work: the case
of research on cellulose degrad-
ing enzymes.” Social Studies of
Science 28, 3: 423-463.

Morgan, M. & Morrison, M. (Eds.)
1999 Models as Mediators. Cambridge:

Cambridge University Press.

103

Moon, J. Y. & Sproull, L.
2000 “Essence of Distributed Work:

The Case of the Linux Kernel”,
First Monday 5(11), http://www.
firstmonday.dk/issues/issue5_
11/moon/index.html.

Nichols, D. M., & Twidale, M. B.
2003 “The Usability of Open Source Soft-

ware.” First Monday, 8(1), http://
w w w.f i rst monday.d k/issues/
issue8_1/nichols/index.html.

Nickell, S.
2001 “Why GNOME Hackers Should

Care about Usability.” In G. U.
Project (Ed.) http://developer.
gnome.org/projects/gup/arti-
cles/why_care/.

NIH
2003 Final NIH Statement on Sharing

Research Data (No. NOT-OD-03-
032): National Institutes of Health
(NIH).

Norris, K. S.
1993 Dolphin Days: The Life & Times

of the Spinner Dolphin. New York:
Avon Books.

Nutch, F.
1996 “Gadgets, gizmos, and instru-

ments – science for the tinkering.”
Science Technology & Human
Values 21, 2: 214-228.

Pavlicek, R.
2000 Embracing Insanity: Open Source

Software Development. Indiana-
polis, IN: SAMS Publishing.

Penchansky, R., & Thomas, J. W.
1981 “The concept of access: defi nition

and relationship to consumer
satisfaction.” Medical Care 19, 2:
127-140.

Perrow, C.
1999 Normal Accidents: Living with

High-Risk Technologies. With a
new afterword and a postscript
on the Y2K problem. Princeton,
N.J.: Princeton University Press.

Preece, J.
2000 Online Communities: Designing

Usability, Supporting Sociabil-
ity. Chichester, New York: John
Wiley.

Radder, H.
2003 The Philosophy of Scientifi c Ex-

perimentation. Pittsburg, PS:
University of Pittsburg Press.

Ratto, M.
2003 The Pressure of Openness: the

Hybrid Work of Linux Free/Open
Source Software Developers. Un-
published PhD dissertation, Uni-
versity of California, San Diego,
USA.

2005a “Embedded technical expres-
sion: code and the leveraging of
functionality.” The Information
Society 25, 3: 205-213.

2005b “Don’t fear the penguins: nego-
tiating the trans-local space of
Linux development.” Current An-
thropology 46, 5: 827–834.

2006 “Foundations and profi les: splic-
ing metaphors in genetic da-
tabases and biobanks.” Public
Understanding of Science 14, 5:
31-53.

Ratto, M. & Beaulieu, A.
2007 “Banking on the Human Ge-

nome Project.” In special issue
on ‘Genes’ and Society: Looking
Back on the Future, S. Z. Reuter
and K. Neves-Graça, (Eds.), Cana-
dian Review of Sociology/Revue
Canadienne de sociologie, 44, 2:
175-201.

Raymond, E. S.
2001 The Cathedral and the Bazaar:

Musings on Linux and Open
Source by an Accidental Revolu-
tionary. Cambridge, MA: O’Reilly.

2003 The Art of Unix Program-
ming. Boston: Addison-Wesley
Professional.

Matt Ratto

Science Studies 1/2007

104

Rheinberger, H.
1997 Towards a History of Epistemic

Things: Synthesizing Proteins in
the Test Tube. Stanford: Stanford
University Press.

2005 “A reply to David Bloor: toward
a sociology of epistemic things.”
Perspectives on Science 13, 3:
406-410.

Rice, R. E. & Rogers, E. M.
1980 “Re-invention in the innova-

tion process.” Knowledge: Crea-
tion, diffusion, utilization 1, 4:
499-514.

Ripoche, G. & Gasser, L.
2003 Scalable Automatic Extraction of

Process Models for Understand-
ing F/OSS Bug Repair, Proceed-
ings of the 16th International
Conference on Software Engi-
neering & its Applications (ICS-
SEA-03), Paris, France, Decem-
ber, 2003.

Rogers, E. M.
1995 Diffusion of Innovation. New

York: The Free Press.
Rossi-Landi, F.
1983 Language as Work & Trade: A Semi-

otic Homology for Linguistics &
Economics. South Hadley, Mass.:
Bergin & Garvey Publishers.

Sandusky, R. J. & Gasser, L.
2005 Negotiation and the coordina-

tion of information and activity
in distributed software problem
management. GROUP ‘05: ACM
2005, International Conference
on Supporting Group Work. Sani-
bel Island,Florida, November 6 -
9, 2005.

Scacchi, W.
2004 “Free and Open Source Devel-

opment Practices in the Game
Community.” IEEE Software 2,
11: 59-66.

Schenkelaars, F. & Ahmad, I.
2004 Transparency and Accountabil-

ity in the Public Sector in the
Arab Region (Concept Paper 4
No. RAB/01/006): United Nations
Online Network in Public Admin-
istration and Finance.

Schroeder, R. & Fry, J.
2007 ”Social science approaches to

e-Science: framing an agenda.”
Journal of Computer-Mediated
Communication, 12, 2. http://
jcmc.indiana.edu/vol12/issue2/
schroeder.html.

Silverstone, R., & Hirsch, E. (Eds.)
1994 Consuming Technologies: Media

and Information Domestic Spac-
es. London: Routledge.

Sonnenwald, D.
2006 “Collaborative virtual environ-

ments for scientifi c collaboration:
technical and organizational de-
sign frameworks.” Pp. 63-96 in
Schroeder and Axelsson (Eds.),
Avatars at Work and Play: Collab-
oration and Interaction in Shared
Virtual Environments. Dordre-
cht, Netherlands: Springer.

Strauss, A. & Corbin, J.
1990 Basics of Qualitative Research:

Grounded Theory Procedures
and Techniques. Newbury Park:
Sage Press.

Strauss, A., & Corbin, J., (Eds.)
1997 Grounded Theory in Practice.

Thousand Oaks, Ca.: Sage.
Thacker, E.
2004 Biomedia. University of Minne-

sota Press.
2005 The Global Genome: Biotechnol-

ogy, Politics, and Culture. Cam-
bridge, Mass.: MIT Press.

105

Thoutenhoofd, E. & Ratto, M.
2007 Cyberinfrastructure and the

cochlear implant: technologi-
cal objects, social ordering, and
epistemic confl ict. Conference
proceedings, Inside Knowledge,
Amsterdam School of Cultural
Analysis, March, 2007.

Torvalds, L.
2001 “What makes hackers tick? a.k.a.

Linus’s Law.” Pp. xiii-xvii in
Himanen (Ed.), The Hacker Ethic.
New York: Random House.

Victor, B., & Boynton, A. C.
1998 Invented Here: Maximizing Your

Organization‘s Internal Growth
and Profi tability. Boston, MA:
Harvard Business School Press.

Von Hippel, E.
1984 Novel Product Concepts from

Lead Users: Segmenting Users by
Experience (Report 84-109). Cam-
bridge, Mass.: Marketing Science
Institute.

1994 The Sources of Innovation. New
York: Oxford University Press.

2001 “Innovation by user communi-
ties: learning from open-source
software.” MIT Sloan Manage-
ment Review 82.

Wartofsky, M. F.
1979 Models. Representation and the

Scientifi c Understanding. Dor-
drecht: D. Reidel.

Wertsch, J. (Ed.)
1981 The Concept of Activity in Soviet

Psychology. Armonk, NY: M.E.
Sharpe.

Wright, M., Marlino, M., & Sumner, T.
2002 “Meta-Design of a Community

Digital Library.” D-lib magazine
8, 5. http://www.dlib.org/dlib/
may02/wright/05wright.html

Wouters, P. & Schröder, P. (Eds.)
2003 The Public Domain of Digi-

tal Research Data. Amsterdam:
NIWI-KNAW.

Wouters, P. & Beaulieu, A.
2006 “Imagining e-science beyond

computation.” Pp. 48-70 in Hine
(Ed.), New Infrastructures for
Knowledge Production: Under-
standing E-Science. London: In-
formation Science Publishing.

Matt Ratto
Current affi liation:
Research Fellow
HUMlab & History of Ideas
University of Umeå, Sweden

New Affi liation, Summer, 2008:
Assistant Professor
Faculty of Information Studies
University of Toronto

email: matt.ratto@gmail.com

Matt Ratto

