
13

Science Studies 2/2007

Science Studies, Vol. 20 (2007) No. 2, 13-33

The profi le of free/libre open source
software (henceforth FLOSS) has risen
dramatically in recent years, both com-
mercially and in terms of academic re-
search on the subject. To some, FLOSS
is the basis for a new way of organizing
economic activities that could replace
the traditional notions of market and
hierarchy (Benkler, 2002); to others it is
the basis for a new form of social order,
bringing to the fore a (new) set of val-
ues (Himanen, 2001). At a more mun-
dane level, the development of FLOSS
is claimed to result in better quality
code than traditional software develop-
ment practices (e.g., Mockus, Fielding

Towards an Understanding of FLOSS:
Infrastructures, Materiality and the Digital
Business Ecosystem

Mary L. Darking and Edgar A. Whitley

In this paper we present empirical work detailing the engagement practices of a
large FLOSS project, the Digital Business Ecosystem (DBE). In common with many
other FLOSS projects, the DBE project focused on the development of infrastructural
software components. Infrastructures and FLOSS software exhibit multiplicity: as
objects they both change and stay the same. Whilst the implications of multiplicity
with respect to infrastructure have been well-documented, with respect to FLOSS,
they remain under-explored. Through examining how the DBE engaged new
participants we were able to explore the nature of the FLOSS software object by
asking the implied question: engagement with what? We draw on recent analysis by
Law and Singleton to show how the innovative yet non-existent potentiality of the
DBE was as signifi cant to engagement as its steadily growing codebase. We argue that
acknowledging the materiality and immateriality of the FLOSS software object has
important consequences for management of, and engagement with, FLOSS projects.

Keywords: FLOSS, infrastructures, innovation, materiality, engagement

and Herbsleb, 2002; Stamelos, Angelis,
Oikonomou & Bleris, 2002) or at least
better than one might expect from such
a loosely structured process.

As a result, FLOSS has been studied
from a variety of perspectives (e.g., Man-
agement Science, 2006). Amongst the
most common are computing (how can
this ‘undisciplined’ approach to systems
development be organised and can it
deliver more successful systems imple-
mentations than traditional methods?),
law (what legal protections exist for
FLOSS and can they be applied beyond
the software fi eld?) and political econo-
my (how can a mechanism that does not

Science Studies 2/2007

14

reward individual effort and is, effec-
tively, a public good continue to produce
high quality software?). For a recent re-
view of these main streams of research,
see von Krogh & Spaeth (2007).

Each of these research streams focus-
es on FLOSS as a process/mechanism
for developing software in distributed
environments where the contributors
may never meet and drawing on existing
legal approaches to intellectual proper-
ty rights in a novel way. As such, FLOSS
differs in important ways from many
earlier studies of the process of software
development (e.g., Brooks, 1995; Cibor-
ra, 1996; Kidder, 1983).

Our concern in this paper, however,
is on properties that FLOSS associates
with rather than the process by which
they are produced. We therefore focus
on the software produced by a particu-
lar FLOSS project. We begin by noting
that software can exist in a variety of
forms, including source code and ex-
ecutable binaries. Software, however, is
more than just a thing that happens to
be produced, it is something that people
engage with and use or not use: it forms
a part of their life-world. As such soft-
ware must be understood as a thing that
presents a ‘constitutive entanglement’
between the material and the social.

The concept of infrastructure forms
another important aspect of our study.
Many of the most successful FLOSS
projects have an infrastructural nature,
rather than being stand-alone systems.
The inter-connectedness of such sys-
tems adds complexity to our under-
standing of FLOSS because questions of
multiplicity apply both to the software
itself and the environment within which
it exists.

In this paper we draw on an empiri-
cal case of a FLOSS project, the Digital
Business Ecosystem (DBE). Its aim was
to provide an information infrastruc-

ture that would address particular soci-
etal goals for small and medium enter-
prises (SMEs) in Europe and elsewhere.
The project has drawn inspiration from
physical and biological concepts of self-
organisation and evolution to produce a
technological platform that will facili-
tate the fl exible composition of software
services. The evolutionary aspects of
the DBE set it apart from similar com-
mercial systems as does the way that
the DBE has been explicitly designed
around FLOSS principles with all the
governance issues this implies.

The DBE engaged people, and there-
fore came into actual being, by possess-
ing two important characteristics or as-
pects: It was a potential idea of a yet to
come — but still absent — ‘evolutionary’
and open source infrastructure; and it
was an iterative and visibly changing
open source project, existing as a steady
stream of releases. That is, the thing it-
self, the DBE, did not exist as a clear cut
‘object’, but rather we see it in terms of
its productive potentiality and see its it-
erative changes as something that soft-
ware objects ‘possess’ (Latour, 2002).

To understand these aspects of the
DBE, we draw on insights on how to un-
derstand the software as an ‘object’ and
we draw particularly on the authors Law
and Singleton, who provide a useful vo-
cabulary for distinguishing different
kinds of change that objects can un-
dergo (Law & Singleton, 2005). For Law
and Singleton, fl uid objects are those
that exhibit incremental change. This
change is often gentle, but can occasion-
ally push the ‘boundaries of instabil-
ity’ when change can be less gentle and
may appear somewhat discontinuous.
Fire objects, in contrast, exhibit sudden,
discontinuous change that is directly
related to the consideration of an ab-
sent other, a potentiality. We argue that
our case study exhibits features of both

15

Mary L. Darking and Edgar A. Whitley

fl uid and fi re objects and this highlights
important epistemological (how can we
know them?) and managerial (how do
we manage them?) challenges for our
case study. We suggest that acknowl-
edging these issues helps clarify our
understanding of FLOSS software more
generally.

We selected the DBE case because it
allowed us to expose particular prob-
lematics concerning the materiality of
software. Software objects are able to
retain their identity even though they
go through multiple changes. FLOSS in
particular is characterised by versioning
and frequent releases. The DBE case is
also an information infrastructure, and
infrastructures also share this ability
to retain their identity despite multiple
changes. In addition, the evolutionary
environment, a key feature of the DBE,
was absent for a large part of the engage-
ment activities presented in the paper.

A single case study constitutes a po-
tential limitation of our study, since our
analysis seeks to produce general re-
sults concerning the nature of software
produced by FLOSS. Our case reveals
software issues related to materiality,
change and infrastructures. We argue
that while these insights apply to most
forms of software, they are particularly
signifi cant in the case of FLOSS given
the many ways in which FLOSS differs
from more traditional software develop-
ment and the infrastructural nature of
many FLOSS systems.

The structure of the paper is as fol-
lows. Section two introduces the re-
search sensitivities about the nature of
software and infrastructures that guide
our research. This is followed by a sec-
tion that describes the DBE case and our
fi eldwork within the DBE project. We
then introduce Law and Singleton’s vo-
cabulary for describing fl uid and fi re ob-
jects and then use these to understand

the engagement with the DBE. We end
with a discussion of the implications of
our analysis of the DBE case for under-
standing FLOSS more generally.

Research sensitivities

The nature of software
It would seem reasonable to expect that
fi elds that are particularly concerned
with the development, use and manage-
ment of software based systems might
have a strong conceptualisation of the
nature of software. For example, the As-
sociation for Information Systems states
that its mission is “to advance knowledge
in the use of information technology to
improve organizational performance
and individual quality of work life” (AIS,
2007), yet a recent survey of one of the
leading journals in information systems
(Orlikowski & Iacono, 2001) found the
fi eld to be lacking a proper conceptuali-
sation of the IT artefact (including soft-
ware). Indeed, according to this study,
25% of the articles in the journal Infor-
mation Systems Research had a ‘nomi-
nal’ (i.e., absent) view of the IT artefact.
Ayanso et al. (2007) update and broaden
this survey and fi nd similar results.

Where Information Systems research-
ers have attempted to defi ne the nature
of software, their defi nitions typically
focus on its abstract nature. For exam-
ple, Zmud (1980) suggests that software
“consists of abstract sets of rules that
govern the creation, transfer, and trans-
formation of data. Initially existing sole-
ly as an idea, it is iteratively refi ned, be-
coming visible at its completion” (p. 45).
These views, which focus on the techni-
cal expression of code (Ratto, 2005) have
been subject to extensive critique and
enable us to develop a more nuanced
view of what software might be.

A fi rst step towards understanding
the software that FLOSS produces is to

Science Studies 2/2007

16

explore the ‘material’ properties of soft-
ware. At one level, software can be seen
as something without material proper-
ties, although it can be represented in a
variety of formats including as electron-
ic pulses in memory, as textual markings
on a printout of source code, as physical
marks on, for example, a CD.

Software does, however, have mate-
rial effects that, as Latour (2003) sug-
gests, “cannot be defi ned impartially
in front of judges without generating
fi stfi ghts in the courtroom” (p. 37). It is
something that people work on, it can be
exchanged (at least its representation,
for example, as source code). Indeed,
FLOSS explicitly uses this ambiguity of
materiality/immateriality in its proc-
esses. FLOSS licenses, arguably a defi n-
ing feature of FLOSS (Chengalur-Smith
& Sidorova, 2003), freely permit others
to make copies of the expression of ideas
(i.e., the software) and develop them for
their own purposes (GPL, 2006). The
digital nature of software, especially
if it is available in source code form, as
FLOSS requires, means that use by one
person does not deprive others of it. Dig-
ital goods do not suffer from the tradi-
tional tragedy of the commons (Gordon,
1954; Hardin, 1968).

This ambiguity about the materiality
of software has led some to suggest that
software should perhaps not even be
conceptualised as some form of object,
instead suggesting that we view software
systems as ‘confi gurational technolo-
gies’ (Fleck, 1999) made up of both tech-
nical and non-technical components
geared to the needs of individual organ-
izations, as Gestell (Ciborra & Hanseth,
1998), i.e., “the ways through which the
ordering and setting up unveils what is
extant as standing reserve of resources
(including human) made available for
future deployment” (p. 320), as narra-
tive networks (Pentland & Feldman,

2007) or even as expectations that can
shape future action (Brown & Michael,
2003; Swanson & Ramiller, 1997).

If, however, we remain close to the
software in itself, Ratto (2005) suggests
that the implicit differentiation between
the expressive and functional aspects of
software is unhelpful, as software often
expresses normative positions about
users, programmers and tasks in its
‘functional’ elements. In so doing he is
echoing the views of Orlikowski (2000)
who follows Jean Lave’s distinction be-
tween ‘cognition in practice’ and ‘cogni-
tion in the head’ to differentiate between
the technological artefact and technol-
ogy–in–practice (Orlikowski, 2000: 408).
The same technological artefact might
therefore be used by different users in
different ways (including non-use) and
this presents a potential solution to the
ongoing tension between those who
believe that software must have some
essential features that structure and
constrain action (e.g., Kallinikos, 2002;
Klein & Kleinman, 2002) and those who
see strong methodological reasons for
arguing against such essential features
(e.g., Cadili & Whitley, 2005; Grint &
Woolgar, 1997).

This emphasis on technology–in–
practice highlights the role that soft-
ware plays in the life-worlds of its users,
it is something that people engage with,
or not, need to be inspired by, or not. As
such it implies a ‘mutual entailment’ or
‘constitutive entanglement’ between
the material and the social (Barad, 2003:
820; see also Latour, 2007; Orlikowski,
2007: 1437).

Therefore, in addition to the ‘features’
of software itself, this line of reasoning
suggests that we also need to under-
stand software as something that people
‘engage with’ and, indeed, this notion of
engagement forms the basis of the em-
pirical work presented below.

17

The ‘constitutive entanglement’ of the
software artefact with its use is nicely il-
lustrated in the question of what counts
as ‘working’ software. MacKenzie (1987)
presents four responses to claims that
determining whether a technology like
software is working is unproblematic.
First, he argues that many disagree-
ments take place during the design
phase, whereas the criterion of working
is an ex post facto one; second, even what
counts as working is problematic (Col-
lins & Pinch, 1998); third, the range of
factors that will typically be required for
a technology to work (social, economic
and technological) is so large that it may
not be obvious what the cause of failure
is; and fi nally that a working technology
does not necessarily confi rm the right-
ness of every decision taken in its design
(MacKenzie, 1987: 213–214).

The ‘intra–actions’ between software
and its use often remain invisible be-
cause of the infrastructural nature of
many systems (Mackenzie, 2005: 72) and
the next section explores how ideas from
information infrastructures can help
develop our understanding of FLOSS.

FLOSS and information infrastructures
Information infrastructures are gener-
ally understood to consist of standard-
ized systems and data, as well as formal
communications mechanisms (Star &
Ruhleder, 1996). They are often classi-
fi ed according to their reach and scope
in terms of the number of activities they
support and the type and variety of ac-
tivities supported.

Information infrastructures reveal
a number of interesting characteristics
that are not always apparent from their
surface descriptions (Ciborra and asso-
ciates, 2000). For example, an informa-
tion infrastructure deals with questions
of universal use and access and as such
requires high levels of standardization

from all potential users of the system.
Interoperability between systems is re-
quired and this has implications for the
fl exibility, resilience and security of the
system. Infrastructures must also be
able to cope with the dual constraints of
local variety and centralised planning
(Hanseth, Monteiro & Hatling, 1996).

Less straightforward aspects of in-
frastructures include the fact that they
are, effectively, embedded into the sys-
tems that use them and this raises im-
portant questions of transparency and
reach. Infrastructures rapidly become
linked to conventions of practice and ef-
fectively become a learned part of mem-
bership of an organization that uses an
infrastructure.

Another key but not immediately ap-
parent feature of infrastructures is that
they are always built on an installed
base, on the basis of what existed pre-
viously. Infrastructures are never built
from scratch and they can never be
changed all in one go. At a trivial level,
switch over is always going to take a fi -
nite time and, for most systems, the in-
troduction of a new infrastructure will
be phased over a period of months or
even years, as new equipment and proc-
esses are introduced, with associated
periods of retraining and organisational
adjustment.

This means that any infrastructure
development project will never cover
the whole of the infrastructure but rath-
er will need to be developed in conjunc-
tion with the constraints arising from
existing aspects of the infrastructure.
It is, therefore, very diffi cult to deter-
mine in advance what the boundaries
of the infrastructure will be. Similarly,
it is not straightforward to determine
which parts of an infrastructure can be
dropped once replacement elements
have been introduced. There are many
examples of infrastructure code that

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

18

contains numerous elements that have
been superseded but which remain in
place because of the desire not to affect
other code that is successfully running.

The relationship between software and
FLOSS
At one level, FLOSS is ‘just’ software.
However, FLOSS differs from traditional
software development in terms of its en-
tanglement with the user and developer
communities which shape the software
that is being developed. A high priority
in FLOSS communities is being respon-
sive to the needs of the developer base,
supporting and facilitating their busi-
ness use of software components. This
is often refl ected in processes of strategy
formation in FLOSS communities which
are frequently modelled explicitly on
democratic ideals concerning inclusion
and transparency.

Therefore, whilst the FLOSS artefact
shares many similarities with software
more generally, FLOSS software–in–
practice has a number of distinctive
features in terms of its development and
use because of this entanglement with
its user/developer community.

Research question
Implicit in both the review of the nature
of software and information infrastruc-
tures is the sense that both are open to
change whilst also remaining ‘stable’.
We therefore argue that to understand
the software that FLOSS produces we
need a vocabulary to address how that
software changes (in terms of its imma-
terial/material aspects, in terms of its
use/non-use and in terms of its impact
on the infrastructural nature of many
systems).

Through our empirical research we
seek to move beyond the empirical tru-
ism that complex systems have various
elements that appear stable/coherent

only as a result of much (often hidden)
work (e.g., Latour, 1996).

Questions about the nature of ‘ob-
jects’ like software have been widely
studied including in science and tech-
nology studies, with some interesting
work arising in the post-ANT literature.
We draw on this literature and the vo-
cabulary it presents to better under-
stand the nature of the changing object
that is FLOSS produced software.

We do this by drawing on a large
FLOSS project we were involved with,
the Digital Business Ecosytem (DBE).
Our research seeks to determine the
insights about the nature of the FLOSS
software object that we can draw from
studying the DBE as an infrastructure
explicitly based on FLOSS principles.

The Digital Business Ecosystem

Methodology and methods
The digital business ecosystem (DBE)
is a concept, a European project and an
infrastructural technology (DBE, 2007).
The aim of the DBE is to provide a fl ex-
ible, distributed infrastructure to tie
economic development to the region,
supporting local trade and industry
through the development of software.
The project has drawn inspiration from
physical and biological concepts of self-
organisation and evolution to produce a
technological platform that will facili-
tate the fl exible composition of software
services. The evolutionary aspects of
the DBE set it apart from similar pro-
prietary models such as Microsoft’s .Net
or SAP’s forthcoming business process
‘appli-structure’, as does the fact that it
has been designed as a non-proprietary
public infrastructure based around
FLOSS principles with all the govern-
ance issues this implies (Darking, Whit-
ley & Dini, 2008).

19

Although the DBE is funded as an Eu-
ropean research project, the innovation
ecosystems cluster in the EU is equally
concerned to ensure that projects like
the DBE combine useful scientifi c ad-
vances with major contributions to
practice, i.e., a concern to not just deliv-
er technological artefacts. In the case of
the DBE, this meant ensuring that SMEs
became actively engaged with the DBE.
To achieve this, a number of ‘regional
catalysts’ were responsible for co–ordi-
nating the engagement activities and in-
volving local SMEs.

Our involvement in the project was as
participant observers, actively involved
in, and studying, the process by which
small and medium sized enterprises in
three regions of Europe (Tampere, Fin-
land; Aragon, Spain; West Midlands,
UK) became engaged with the DBE.

The process through which data was
collected for this research involved
being participant observers at engage-
ment workshops and meetings across
the three DBE regions. This fi eldwork
activity was supported by a programme
of interviews with regional catalysts and
both actual and potential SME drivers.
This last point helped us to understand
why some SMEs lost interest as well as
the motivations for others to become in-
volved with the project.

The fi eldwork reported in this paper
associated with the engagement activi-
ties was undertaken by the fi rst author,
who was a full-time research offi cer on
the project. The research involved at-
tending the DBE engagement events that
took place between February and July
2005. In addition, for the engagement
study, we carried out 17 semi-structured
interviews in each of the three DBE re-
gions (each interview lasting between
1–2 hours). From ‘fi rst contact’ to formal
engagement, the aim was to describe
how the interest of driver SMEs in the

FLOSS infrastructure was captured and
then sustained.

The DBE was a 3-year project and
we were engaged as researchers for the
fi nal 2 years. Our fi eldwork refers to a
six-month period during those 2 years in
which key aspects of the technology and
its use were revealed. Our reason for se-
lecting this 6-month period is that it was
during this time that SME engagement
in the project was sought and the period
was therefore when issues of what it was
they were engaging with became impor-
tant, rather than the early iterations in
the development of the artefact itself.

Interviews were recorded and re-
viewed by both authors independently.
The normal project reports and meet-
ings associated with an EU funded
project of this scale provided further
resources and in addition a number of
blogs emerged from participants in the
engagement process (e.g., Bergius, 2005;
Konda, Shelton & Bayon, 2007) which
provided spontaneously generated al-
ternative representations of the events
with which to compare the impressions
of the researchers.

Once three target groups were iden-
tifi ed as part of its engagement strat-
egy (Drivers, Users and Implementers),
a signifi cant shift in DBE engagement
priorities was agreed by the project.
Instead of focusing on recruiting user
SMEs (those companies who would use
services running on the DBE infrastruc-
ture) engagement efforts were focused
on driver SMEs (those companies who
would provide services) and on infl uen-
tial regional actors such as policy mak-
ers. The targets set for regional catalysts
were to recruit 3–5 driver SMEs by the
end of the fi rst 18 months of the project.

The process of engaging the SMEs
with the DBE project raised many and
varied issues from a rich and wide rang-
ing set of perspectives and these are de-

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

20

tailed elsewhere (e.g., Whitley & Dark-
ing, 2006). For this paper, we use this
experience to ask what it was that these
SMEs were supposed to be engaging
with and our focus is on the software
object itself and its material practice.

The DBE technology
Although the DBE in its totality encom-
passes a range of stakeholders, social
networks and regional actors, as a tech-
nological infrastructure it is comprised
of a group of FLOSS projects explicitly
linked together by ‘light’ architectural
principles so as to avoid the technologi-
cal lock-in that infrastructures often
face. These principles govern not only
the choice of languages, technologies
and protocols used, but also the ways
in which projects and technologies are
integrated.

Broadly speaking, the principles in
question stem from a distributed, fl exi-
ble, open standards approach that seeks
to maximise the ability to couple and
uncouple component parts. The high
degree of abstraction in the overall ar-
chitecture with its emphasis on ‘meta-
level’ design has been an important
element and was a strong selling point
for many FLOSS developers and small
software houses. By ensuring that all
components are essentially dispensable
without changing the overall shape of
the infrastructure, the way is left clear
for new and better solutions to emerge
and take their place within the DBE.

This creates more opportunities for
developer communities to shape the
infrastructure according to their re-
quirements and in line with new devel-
opments in the wider software environ-
ment. Each and every element of the DBE
is created under FLOSS licensing and
the core network component has been
created as an individual project. When
the DBE project fi rst began there were

around 40 individual projects worked
on by a combination of distributed and
co-located teams of developers based in
universities and in both large and small
technology companies. Gradually these
projects consolidated into 3 main areas
incorporating these many smaller com-
ponents: a development environment
or service factory (DBE Studio, 2007);
a peer–to–peer based execution envi-
ronment (FADA, 2007; Swallow, 2007);
and an optimization facility known as
the evolutionary environment (EveNet,
2007). The DBE can be regarded as a dis-
tributed middleware that exists above
the internet protocol (IP) layer. The DBE
run-time environment is a collection of
server–clients (ServEnts) and because
both end-points are controlled the envi-
ronment can rely on different transport
protocols. Currently, SOAP (Simple Ob-
ject Access Protocol) is being used but
this is simply a starting point and there
is nothing to prevent a more effi cient bi-
nary protocol from being introduced by
community developers at a later date.

The DBE’s dynamic, multi–layer ar-
chitecture makes it service-oriented
rather than address-oriented, meaning
that the service follows the user as the
user changes devices. The DBE can be
understood as three dynamic and dis-
tributed environments or as three sets
of local components that allow the indi-
vidual user to create/describe software
services, expose or consume services
and issue service search requests. Each
instance of the server/client constitutes
a node in the dynamic peer–to–peer net-
work through which the infrastructure
operates. The repository of services itself
is designed to be distributed across local
distributed databases (known as ‘habi-
tats’ in the DBE ecosystem model) to re-
spond to local requests for services. The
optimization facility can pick up pat-
terns in service requests and demands

21

across different ‘habitats’, automatically
distributing services across the infra-
structure as and where the need arises.

Every element of the DBE requires a
critical mass of users. Network nodes
are only created when the infrastruc-
ture is used by companies either posting
or searching for services. The possibil-
ity of reaching new markets by expos-
ing services can only be realized if there
are suffi cient potential clients searching
the infrastructure and the distribution
of services across habitats will only be
optimized if enough relevant patterns of
usage are identifi ed. For this reason, en-
gaging potential users and service pro-
viders in the development of infrastruc-
ture is key.

Fieldwork
The beginning of fi eldwork, which took
place in Finland in February 2005, was
timed to coincide with the fi rst in a pro-
gramme of training/engagement events.
Whilst there were still no technological
components of the DBE to show SMEs,
this workshop was designed to focus
specifi cally on the technological con-
cepts and architecture of the DBE. Fol-
lowing this event, the researcher attend-
ed every training or recruitment event
that took place from this point until
mid-June 2005. Further details of the en-
gagement experience are given in Dark-
ing and Whitley (2005).

The period in time that this research
refers to is a distinctive one because it
depicts a period of transition where en-
gagement in the DBE as a technological
entity went from being purely concep-
tual to something tangible. Following
actor-network theory, it is not simply
status or weight of numbers that governs
why a particular preference or point
of view is signifi cant (Latour, 2005). It
can be the part that point of view plays
in achieving a stable network of asso-

ciations. For example, we found that the
fi rst contact any SME had with a DBE
technological component was a signifi -
cant test of credibility and therefore the
opinions and feedback offered at that
moment were important, even though
they concerned just one SME.

According to actor-network theory,
likely sites of engagement between users
and new technologies are often easy to
pinpoint. The work that goes into proc-
esses of group formation and enrolment
are almost always conspicuous, as it
not only involves people but also mate-
rial and symbolic resources like booking
meeting rooms, sending out invitations,
ordering refreshments, drawing on per-
sonal contacts etc. (Latour, 2005).

In the DBE, the programming of en-
gagement and training events were
particularly important. These events
marked moments when, for the fi rst
time, project machinery, technological
components and SMEs were brought
together. The social aspect of these
networking and dissemination events
and the co–learning that inevitably en-
sued was valuable to all event partici-
pants and sometimes featured in their
personal blogs. For example, Bergius
(2005) writes about the excitement of
running the fi rst DBE services over the
‘FADA’ decentralized peer to peer (P2P)
network. Innovative new ideas and as-
sociations came from sharing and ques-
tioning business, technology and policy
ambitions.

Throughout the period of study, how-
ever, an important element was miss-
ing from the picture: the DBE technol-
ogy. This meant that interest in the DBE
often had to be generated before tech-
nological components were ‘physically’
available for inspection. This is not an
uncommon situation when it comes to
the dissemination of new technologies
as potential users are commonly asked

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

22

to engage with a concept, an idea of what
a new technology is capable of before
they can see it for themselves (Borup,
Brown, Konrad & Van Lente, 2006). By
defi nition, it is almost always too late to
start engagement activities at the point
when technological components are fi -
nalised and so pre-emptive engagement
action is invariably required. However,
the reality of this situation was that
early recruitment events lacked any ap-
plied examples or technological dem-
onstrations. This was a ‘pre-prototype
stage’ where even communicating the
basic concept of the DBE presented dif-
fi culty due to the advanced nature of the
technology.

High level ‘scientifi c’ or ‘business’
overviews were often met with a ‘so
what?’ attitude from SMEs. There was
often criticism at engagement events
and in SME interviews that project part-
ners were indulging in marketing speak.
For example, the idea that the DBE was
a ‘unique technology’ that would ‘revo-
lutionise European software develop-
ment’ quickly drew criticism. Presenta-
tions that focused on higher order con-
cepts rather than what the technology
would ‘do’, coupled with the fact that
the technology in question did not exist
in any appreciable, tangible form, led
to accusations that the project was at-
tempting to sell ‘vapourware’. In order
to progress understanding, SMEs would
often fall into using metaphors and
similes, or else they would seek to cross-
reference functional aspects of existing
technologies in order to build a picture
of what the DBE infrastructure would
do. For example, respondents spoke of
trying to make sense of the DBE in terms
of existing technologies like “P2P pro-
tocols and intelligent networking tools”
(Bergius, 2005). Mechanical metaphors,
particularly those describing the physi-
cal working of an engine were often fa-

voured and acted as substitutes for the
distinctly intangible infrastructure they
were trying to understand. For example,
whilst SME participants were content to
listen to sessions on architectural de-
sign and philosophy up to a point, devel-
opers then wanted to “get the bonnet up
and see what’s under the hood” insisting
that in terms of integrating their services
with this so far non-existent infrastruc-
ture “the devil is in the detail” (Darking
& Whitley, 2005).

At one level, it could be argued that
many of the diffi culties faced by the DBE
during the engagement process were
similar to those experienced by any in-
novative project. Interestingly, howev-
er, when faced with such problems the
SMEs made repeated and forceful re-
quests for ‘tangibles’ of the FLOSS proc-
ess — documentation, release dates,
components to test, code to compile;
they wanted to be able to ‘see’ something
of the technological object. The absence
of these elements hindered the process
of gaining the trust of SMEs but it did
not quash their interest. For some, when
asked why they had remained involved
in the DBE the answers would mention
the architectural principles of the DBE.
With its ‘meta-approach’ to standards,
languages and ontologies in the infra-
structure as well as the evolutionary
aspect of the service evaluation, the po-
tential this architecture suggested for
‘levelling the playing fi eld’ with respect
to small and large software companies
was something that carried wide appeal.
For others, this was a question of soft-
ware design methodology. Some part-
ners wanted to see the fi nished product
whilst those familiar with FLOSS meth-
ods were happy to proceed with techno-
logical components that were works–in–
progress although questions were raised
about whether the project was sincerely
open.

23

Early engagement events caused those
responsible for DBE SME engagement
to re-evaluate their strategy. Whilst an
‘evolutionary’ approach to SME engage-
ment allowed plenty of scope for varia-
tion in outcomes and regional strate-
gies, it offered little concrete support
for planning what to do and how. First
encounters with SMEs suggested that
engagement should not be conceived of
as a top-down program of research dis-
semination. Such an approach could not
refl ect the realities of an engagement
process in which development and un-
derstanding of the DBE would happen
gradually alongside the development of
DBE technical components which were
slowly released.

However, inspecting technical com-
ponents alone would not yield more
understanding. For engagement to be
successful, SME developers had to see a
clear business use for the DBE. With no
prototype to demonstrate and no exist-
ing business case to cite SMEs would
often begin discussing the possibilities
that generating, exposing and combin-
ing e–business services using the DBE
could open up. Using their own novel
ideas for existing or imagined e–busi-
ness services they would start to brain-
storm between themselves, rapidly for-
mulating connections and associations
that the DBE could support. A recurrent
example came from the SME developers
who were frequently commissioned by
clients to carry out bespoke integration
work, joining together and customis-
ing inter-organisational Enterprise Re-
source Planning systems. By openly dis-
cussing individual e-business services
in front of participants working in other
business sectors, the potential for link-
ing services would strike the SME de-
velopers. One observer remarked after
one such brainstorming session that he
could almost see “light bulbs going on”

as individuals suddenly understood
what could be possible in terms of devel-
oping a market for their services outside
the boundaries of their own country or
sector (Darking & Whitley, 2005).

Strong feedback loops, an iterative ap-
proach to the scheduling and design of
future engagement events and the emer-
gence of a fi xed group of driver SMEs
permitted focus to shift away from ini-
tial expectations of fi nished components
and proven business cases to building
relationships. Engagement events de-
veloped an implicit focus on generating
trust and establishing the right condi-
tions for group-based co-learning as op-
posed to top–down dissemination. Con-
ceptual understanding of how the DBE
would alter business and technological
practices continued to develop, even-
tually forming a strong framework for
collaboration. As technological compo-
nents were released engagement events
increasingly took the form of workshops
where SMEs would experiment with
linking their legacy services to the DBE
infrastructure via the ServEnt and car-
rying out ‘hello world’ tests over the
FADA network. Understanding the in-
frastructure as a dynamic context for in-
novation opened up possibilities for new
associations that were not dependent on
geographical proximity. This allowed
SMEs to envisage their services in rela-
tion to a new paradigm of associations
reaching out new potential markets for
their services.

A vocabulary for understanding the soft-
ware object
From the description of the engagement
activities it is apparent that there was no
single, stable software ‘object’ that the
SMEs were attempting to engage with.
In order to make sense of the empirical
data we draw on a recent paper by Law
and Singleton (2005) (henceforth L&S)

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

24

that reports on their diffi culties in map-
ping the ‘trajectories’ of alcoholic liver
disease. Alongside uncertainties about
the quality of their research and pos-
sible inadequacies in the management
of the hospital, L&S highlight two other
strategies for addressing the diffi culties
they were facing.

Their epistemological strategy sug-
gests that some of these problems could
have arisen because of differing perspec-
tives on the situation in a manner simi-
lar to notions of interpretative fl exibility
(Pinch & Bijker, 1987) that have been ap-
plied in both strong and weak forms to
technological objects. Their other strat-
egy is to question the ontological sta-
tus of the thing they are studying: what
exactly is the nature of the object? That
is, the object is not simply the same and
subject to multiple interpretations, it is
in fact different, according to the multi-
ple realities that are enacted into being.
It is this strategy that we adopt to under-
stand FLOSS in the case of the DBE.

When they reconsider the nature
of the object, their argument passes
through a number of stages. They draw
on recent, post-ANT studies that devel-
op Latour’s original idealised notion of
immutable mobiles. Immutable mobiles
are often seen as mechanisms of long-
distance control that are able to main-
tain their shape despite being part of
many (network) relationships.

Recognizing that, in practice, few
mobiles are in fact truly immutable,
L&S next present the notion of muta-
ble mobiles (Moser & Law, 2006) which
they illustrate using de Laet and Mol’s
(2000) description of a water pump in
Zimbabwe. The pump changes con-
stantly both in form and function as it is
moved between locations and repaired
with ready-to-hand materials as parts of
it breakdown: “it is something that both
changes and stays the same” (Law & Sin-
gleton, 2005: 338).

The fl uidity of the Zimbabwean water
pump extends far beyond the ability to
replace bolts with steel bars, or the leath-
er seals with a bit of an old tyre (de Laet
& Mol, 2000: 238–242), the pump is also
fl uid in terms of what it produces (ex-
actly how pure must the water be for the
pump to ‘work’ (pp. 242–245)) and how
closely the local community must be in-
volved in the creation and maintenance
of the pump (pp. 245–247). As such, the
pump also shares some of the character-
istics of an infrastructure. The fl uidity
of the pump is therefore enabled by the
extensive network that the pump is en-
gaged with (Law & Singleton, 2005: 338).

So far, Law and Singleton’s trajectory
mirrors that of many authors seeking to
make sense of innovations. They recog-
nise that objects often change over time
and present a useful metaphor (‘fl uid’)
for this process. The fl uid metaphor is
normally used to describe gentle chang-
es to the object but can include some of
the wilder changes that an object under-
goes when it reaches the ‘boundaries of
instability’ (Stacey, 2001).

However, the fi nal stage of their anal-
ysis provides particular insights that are
relevant for making sense of the DBE
engagement process. This introduces
a post-ANT consideration of issues of
invisible work and the colonization of
the other (Lee & Brown, 1994). They
argue that there is a sense of safety in
ANT where networks are built around
resilient actors, immutable mobiles or
perhaps mutable mobiles that nonethe-
less change fl uidly. The unknown other
is often not the focus of these networks
which tend to centre themselves around
powerful, infl uential actors. For L&S, as
for other critics of ANT (e.g., Star, 1991),
this is unsatisfactory, not only from a
socio–political point of view but also be-
cause the ‘not present’ can have a huge
impact on the shaping of networks. L&S

25

present the example of a British aircraft
company that engineered features of an
aircraft wing specifi cally to cope with
fl ying situations that would occur in an
European war against the Russians. ‘The
war’ and ‘the Russians’ never became
a reality but they were still infl uential
in the design of the aircraft. Therefore,
“we cannot understand objects unless
we also think of them as sets of present
dynamics generated in, and generative
of, realities that are necessarily absent”
(Law & Singleton, 2005: 343). They label
such objects as fi re objects because
“fi res are energetic and transforma-
tive, and depend on difference — for in-
stance between (absent) fuel or cinders
and (present) fl ame. Fire objects, then,
depend upon otherness, and that other-
ness is generative” (p. 344).

According to the vocabulary pre-
sented by Law and Singleton, there is a
range of ways in which a current object
may point at a future object. The future
object may evolve fl uidly from the cur-
rent object. Alternatively, the future
object may be discontinuous from the
current object specifi cally because of
the consideration of the absent other. In
the next section, we argue that FLOSS
software as exemplifi ed by the DBE can
be more than just a fl uid object and that
instead the DBE can best be understood
in terms of it being both a fi re and fl uid
object.

Understanding the DBE
In order to understand the technologi-
cal object, L&S argue that we must be
prepared to accept “that a fl uid, shape-
shifting and name-changing object is
indeed a conceivable possibility” that
is “not ruled out by prior methodologi-
cal commitments to particular and lim-
ited versions of clarity” (Law & Single-
ton, 2005: 340) yet their paper presents
two distinct and distinctive concepts:

fi re and fl uid objects. A common theme
in much of the post-ANT literature is a
concern not to reify and solidify partic-
ular concepts such as strategy (Neyland,
2006) or even actor-network theory itself
(Law, 1998). There is therefore a tension:
is it possible to not reify fi re and fl uid
objects and yet still be able to highlight
and draw on their distinctive charac-
teristics? Although their paper suggests
that objects could either be fl uid objects
or fi re objects, our study of the process
of engaging with the DBE suggest that
many FLOSS projects might actually
have characteristics of both.

In terms of gently changing shape,
many aspects of the DBE as an examplar
of FLOSS clearly satisfy the criteria for a
fl uid object. Perhaps the most straight-
forward illustration of this can be seen
in the FLOSS development process. In
common with most FLOSS projects,
many parts of the DBE software infra-
structure are continuously changing
and it is this process of change that will
remain central to the sustainability of
the infrastructure (Feller & Fitzgerald,
2000).

For example, Table 1 below shows
part of the releases log of the DBE Studio
(one part of the DBE infrastructure). As
the table shows, the software changed
(mostly ‘gently’) approximately every
two weeks shifting from being more
‘concept than technology’ to more ‘tech-
nology than concept’. Indeed, software
engineering has developed a number-
ing protocol for illustrating whether the
changes between versions are minor or
major and this versioning is one way in
which users can relate to the multiplic-
ity of the software. Essentially minor
changes are indicated by adjusting the
last numbers (e.g., going from version
0.1.1 to version 0.1.2 is a minor change)
whilst more signifi cant changes are in-
dicated by adjusting the fi rst numbers

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

26

(e.g., moving to version 0.2.0 or more
markedly to version 1.0.0). It is common
FLOSS practice for this numbering to
be used by the programmers to indicate
the difference between (even) stable re-
leases and (odd) unstable releases.

In the case of the DBE, Version 0.1.4
is announced with the message “Big
thanks to all that made the fast turn
about on both reporting and fi xing
bugs!! :-)”. Version 0.1.7 is announced
with “This release mainly contains bug
fi xes and minor changes” with a similar
announcement for Version 0.1.8, where-
as the release of Version 1.0.0 (Febru-
ary 2007) talks of “An all–in–one release
of the DBE Studio 1.0.0 is available for
download from our Sourceforge site.
This includes an Eclipse SDK (Windows)
distribution with the required GEF, EMF,
JEM and WTP feature dependencies” (all
extracts taken from DBE Studio, 2007
emphases added). Whilst the release of
version 1.0.0 represents a larger jump
than the earlier versions, the jump is not
a fi re–like jump as it does not incorpo-
rate the absent other.

If we use these fl uid changes as a
basis for understanding the DBE and
argue that the DBE and perhaps FLOSS
more generally are best characterized as

fl uid objects, then this does not explain
the problematic engagement process
we saw with the DBE. There is now ex-
tensive experience of developing open
source projects and if the DBE was sim-
ply a fl uid object, then questions of SME
engagement with the DBE would simply
have been those that any FLOSS project
would encounter and the contribution of
science and technology studies to FLOSS
could rest with identifying the implica-
tions of fl uid objects on FLOSS develop-
ment. Moreover, the empirical evidence
from the SME engagement strategies
indicates that for many of the SMEs, the
FLOSS aspect of the DBE engagement
process was relatively unproblematic.
Indeed, the calls by a number of devel-
opers to make sure that updates to the
software were made available regularly
and that support requests and bugs were
handled promptly (Darking & Whitley,
2005) suggested that for some, the DBE
was not fl uid enough.

The infrastructural nature of the DBE
also does not explain the problems with
the engagement process. As an infra-
structure, the DBE was explicitly built
around changing and staying the same.
The design of the system, based around
FLOSS licensed components, meant that

Table 1. Version information for DBE studio, taken from (DBE Studio, 2007).

Version Date of Release Days since last version
Version 0.2.0 2006-02-28 06:54 34
Version 0.1.11 2006-01-25 03:15 16
Version 0.1.10 2006-01-09 15:43 19
Version 0.1.9 2005-12-21 09:10 16
Version 0.1.8 2005-12-05 08:26 14
Version 0.1.7 2005-11-21 09:17 5
Version 0.1.6 2005-11-16 03:54 20
Version 0.1.5 2005-10-27 15:21 2
Version 0.1.4 2005-10-25 15:27 13
Version 0.1.3 2005-10-12 13:14 1
Version 0.1.2 2005-10-11 15:47 0
Version 0.1.1 2005-10-11 15:41 6
Version 0.1.0 2005-10-05 19:35

27

it was always intended that elements
of the DBE could be replaced at a later
date, without the DBE ‘changing’ (for ex-
ample, it would be possible replace the
SOAP protocol with a more effi cient bi-
nary access protocol).

In many cases, it was other aspects of
the DBE that affected their engagement
with it. The vision for the DBE project for
both the EU and project members was
much more than simply the development
of non–proprietary service infrastruc-
ture for SMEs to use (Darking & Whitley,
2005). The engagement strategies could
not therefore simply rest upon the pro-
vision of a series of smoothly develop-
ing software tools that mimicked exist-
ing commercially available alternatives.
They could not, therefore, put–in–stone
too many of the distinctive elements of
the DBE that had not yet, at that time,
been developed into fully fl edged as-
pects of the ecosystem.

The process of engagement with the
DBE also had to incorporate the “reali-
ties that are necessarily absent” (Law &
Singleton, 2005: 342) as “not everything
can be brought to presence” (p. 342) and
the DBE is performed by the “enactment
of different objects in the different sets
of relations and contexts of practice” (p.
342).

In the context of engagement, one of
the most conspicuous examples of ab-
sence was the ecosystem element of the
project. Drawing on the work of the sci-
ence domain of the DBE project, a key
element of the project is the ability of
the infrastructure to combine and re-
combine software services available on
the DBE fl exibly. Whilst many such trial
combinations may not necessarily be
viable, a distinctive element of the DBE
is this ability to make connections be-
tween available services to provide new
opportunities for user SMEs to interact.

Any engagement activities with SMEs
must therefore account for this aspect of
the DBE, as this is one of the long term
strategic benefi ts of integrating services
with the DBE and one of the key reasons
for the initial EU funding of the project
and the whole ecosystems technology
cluster (Nachira, 2002). This innovative
element could not be present in the ear-
liest stages of the DBE engagement proc-
ess as it both depended on the practical
development and implementation of the
Evolutionary Environment (EvE) and
the population of the DBE infrastructure
with suffi cient services for this element
to begin to make realistic experiments
in combining services.

The case has at its core a central di-
lemma: the process of engagement with
the DBE had to deal with a technological
object that was undergoing an intensive
process of collaborative innovation. In
addition, the DBE as a technological ob-
ject had, at the same time, characteris-
tics of what L&S label as a ‘fl uid object’
which underwent only minor changes
over time and their ‘fi re object’ that was
defi ned, in part, by what was not present
and was discontinuous from the exist-
ing versions of the technology.

The pre-prototype character of the
technology is one way in which this
complexity can be seen. The tension
between absence and near–presence
was a tangible reality for those involved
in DBE engagement work. However, in
trying to organize training and engage-
ment events, the absence of the technol-
ogy was instinctively countered by par-
ticipants through brainstorming activi-
ties through which they developed their
own sense of how the technology could
be integrated with specifi c business
ideas and capabilities both now and
in the future. In this way, the DBE was
drawn into multiple realities, regardless
of its ‘physical’ absence.

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

28

Discussion

One of the primary uses that SMEs saw
for the DBE environment was the role
it could play in facilitating the bespoke
systems integration work that many of
them were already undertaking. As an
infrastructure founded on fl exible de-
sign principles, the DBE is application,
computer and network agnostic which
created an environment for construct-
ing data fl ows. Providing bespoke solu-
tions to facilitate inter–organisational
data exchange or, more commonly,
intra-organisational data exchange be-
tween discrete enterprise resource sys-
tems was a mainstay of the SME consul-
tancy work. Being able to adapt systems
components as and when their clients
requested this, without having to wait
for a new release from proprietary tech-
nology companies allowed the SMEs re-
main agile and customer-driven.

This also helps explain why the project
attracted the EU funding. The project
was initially driven and funded by an
EU vision for how SMEs could develop
a new environment for competitive col-
laboration. This public good, however,
relied on both the fl uid and fi re charac-
teristics of the project. The project was
funded, in part, because of its fi re poten-
tial, but had to be developed and imple-
mented using the known fl uid practices
of FLOSS.

From our study of the engagement
with the DBE we note that too much
emphasis on the fl uid nature of the
DBE could create a formative context
(Ciborra & Lanzara, 1994) which could
stifl e the ability of the SMEs to engage
with and incorporate many of the ad-
vanced, distinctive features of the DBE
that would become available when the
project ended: “once designed and intro-
duced into the organization, they tend
to evolve along paths that are often un-

expected and irreversible, subtly chang-
ing the ways people design and carry out
their work practices, experiment with
alternative arrangements and routines,
or implement alternative visions and
designs” (Ciborra & Lanzara, 1994: 63).

In the same way, too much emphasis
on the not–yet–available future capabil-
ities of the DBE would make it unattrac-
tive for SMEs to become involved with
the DBE, especially the driver SMEs, as
they have a particular desire to work
with running code and implementable
services.

This tension between the fl uid and
fi re aspects of the DBE raises more gen-
eral concerns about the nature of FLOSS
projects. Fluid objects are becoming
increasingly understood in practice.
Our study of the DBE has emphasized
the physical, material nature of many
of these fl uid changes. The software
developers were happy for the DBE to
be changing, but they wanted access to
source code, design principles, docu-
mentation etc. Therefore, fl uid aspects
of FLOSS emphasise the material nature
of the software; they rely on access to
the source code, documentation etc. of
the project as it unfolds.

The fi re nature of the DBE, how-
ever, emphasized the immateriality of
the project. While some SMEs were in-
trigued by the functional, operational
aspects of the code, as many again were
participating in the project because of
the immaterial prospects that the dis-
continuous next version would offer,
e.g., the environment of evolutionary
service matching. As a result FLOSS
projects that have a fi re nature will place
an emphasis on the immaterial aspects
of the system that cannot be addressed
by simply providing access to source
code etc.

The fl uid and fi re nature of the project
led some users to fear that the project

29

would end up as yet more vapourware,
as it required a careful mixing of both
the fl uid and fi re elements of the sys-
tem. If the challenges of reconciling the
two were successful, however, then the
resulting object would both become
more stable and yet also remain open to
both more stabilized (immutable) and
changeable (fi re) versions in the future.

This tension between fl uid and fi re
aspects of the DBE can also be seen in
terms of the issues associated with the
management of information infrastruc-
ture more generally. Infrastructures
require, on the one hand, the opportu-
nity for expansion and change and on
the other hand the diffusion of and in-
vestment in the existing infrastructure
which leads to a strong conservative in-
fl uence that opposes change (Monteiro,
1998).

As our study of the DBE confi rms,
FLOSS differs from proprietary soft-
ware objects in its constitutive entan-
glement with the community-based
dynamics of collaboration from which
components are developed. Remaining
responsive to the needs of the developer
base, supporting and facilitating their
business use of software components is
a high priority in FLOSS communities.
This gives rise to a more or less unlim-
ited capacity for change and therefore a
more fl uid software object that directly
refl ects the needs of contributors. Wel-
coming voluntary contributions means
there is a greater preoccupation with en-
gagement and with maintaining a syn-
ergy between the software object and its
developers.

This means that in contrast to soft-
ware more generally, the FLOSS object
changes in an open (fl uid) manner with
developers taking time to articulate their
learning for the benefi t of the commu-
nity, whereas for proprietary software
development learning and innovation

are often kept ‘secret’. The greater role
that co–operation and negotiation play
in strategy formation for FLOSS com-
munities has implications for the way in
which discontinuous (fi re) changes are
experienced by the developer base. Al-
lowing the software to be altered by its
developer base in response to user and
business needs opens up potential for
innovation; potential that may not be
visible from traditional managerial and
strategic viewpoints. An approach to
governance or strategy that is too rigid
and that does not take into account the
sensitivities we describe in this paper
could therefore have potentially limiting
effects on the kind of boundary–cross-
ing innovations that FLOSS technolo-
gies are capable of achieving.

For the science and technology stud-
ies literature, the DBE provides an em-
pirical opportunity for studying the
existence of objects that offer both the
characteristics of fl uid and fi re. This al-
lows us to develop the analysis beyond
that presented by Law and Singleton
and take their approach further and in
particular to explore the managerial
and epistemological concerns that such
objects raise.

However, more research is required
to understand how fi re objects are cre-
ated in practice. In their illustration of
fi re objects, L&S state that considera-
tion of ‘the Russians’ shaped the design
of the military aircraft wing as it needed
more lift than a civil aircraft wing would
need (p. 343), but they give limited guid-
ance as to how this consideration of the
absent other takes place or how it can
be studied, other than suggesting that
it is probably best studied qualitatively
rather than quantitatively as they do
with their emphasis on interviews and
case studies. For example, if the absent
other is “the elephant in the room”, i.e.,
something that everyone knows about

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

30

but does not mention, how can the as-
sociations (Latour, 1986) between it and
the fi re object be demonstrated? If the
absent other is widely understood, it
may never be discussed in the develop-
er mailing lists and IRC chats, the most
common location for data collection in
FLOSS projects (Kuk, 2006).

Acknowledgements

The authors would like to thank the spe-
cial issue and journal editors for their
support and encouragement and would
particularly like to thank the two anon-
ymous reviewers for their helpful and
insightful comments. Special thanks
also to all the participants at the spe-
cial issue workshop in Helsinki for their
comments on the earlier versions of the
paper. Aaron Martin, as ever, did an ex-
cellent job in proofreading the text for
us. A part of this work was funded by
the Digital Business Ecosystem–DBE
FP6 Integrated Project (DG–INFSO),
Contract number 507953.

References

AIS (2007) ‘About the Association for
Information Systems’, URL: http://
home.aisnet.org/ Last visited 17 De-
cember 2007

Ayanso, Anteneh, Lertwachara, Kaveep-
an & Francine Vachon (2007) ‘Diver-
sity or identity crisis? An examination
of leading IS journals’, Communica-
tions of the AIS 20: 660-80.

Barad, Karen (2003) ‘Posthumanist per-
formativity: Toward an understand-
ing of how matter comes to matter’,
Signs 28(3): 801-32.

Benkler, Yochai (2002) ‘Coase’s Penguin,
or Linux and the nature of the fi rm’,
Yale Law Journal 112(Winter 2002-
2003): 369-446.

Bergius, Henri (2005) ‘Motorcycle ad-
ventures and free software: A blog’,

URL: http://bergie.iki.fi /blog/ar-
chive/month/2005/6.html Last vis-
ited 17 December 2007

Bergius, Henri (2005) ‘First look at Dig-
ital Business Ecosystem’, URL: http://
bergie.iki.fi /blog/fi rst-look-at-digital-
business-ecosystem.html Last visited
17 December 2007

Borup, Mads, Brown, Nik, Konrad, Ko-
rnelia & Harro Van Lente (2006) ‘The
sociology of expectations in science
and technology’, Technology analysis
and strategic management 18(3/4):
285-98.

Brooks, Frederick P. (1995) The Mythi-
cal Man-Month: Essays on Soft-
ware Engineering (Cambridge, MA:
Addison-Wesley).

Brown, Nik & Mike Michael (2003) ‘A so-
ciology of expectations: Retrospect-
ing prospects and prospecting retro-
spects’, Technology analysis and stra-
tegic management 15(1): 3-18.

Cadili, Sarah & Edgar A. Whitley (2005)
‘On the interpretative fl exibility of
hosted ERP systems’, Journal of Stra-
tegic Information Systems 14(2):
167-95.

Chengalur-Smith, Shobha & Anna Sidor-
ova (2003) ‘Survival of open-source
projects: A population ecology per-
spective’, in S. T. March, A. P. Massey
& J. I. DeGross (eds) International
Conference on Information Systems
(Seattle: 782-87).

Ciborra, Claudio U. (ed) (1996) Group-
ware & Teamwork: Invisible aid or
technical hindrance (Chichester:
Wiley).

Ciborra, Claudio U. and associates
(2000) From Control to Drift: The dy-
namics of corporate information in-
frastructures (Oxford: Oxford Univer-
sity Press).

Ciborra, Claudio U. & Ole Hanseth
(1998) ‘From tool to Gestell: Agendas
for managing the information infra-

31

structure’, Information technology
and people 11(4): 305-27.

Ciborra, Claudio U. & Giovan Francesco
Lanzara (1994) ‘Formative contexts
and information technology: Under-
standing the dynamics of innovation
in organizations’, Accounting, man-
agement and information technolo-
gies 4(2): 61-86.

Collins, Harry & Trevor Pinch (1998)
The Golem at Large: What you should
know about technology (Cambridge:
Cambridge University Press).

Darking, Mary & Edgar A. Whitley (2005)
‘Project report 27.2 - Studying SME
Engagement Practices’,URL: http://
personal.lse.ac.uk/whitley/allpubs/
DBE2005.pdf Last visited 17 Decem-
ber 2007

Darking, Mary, Whitley, Edgar A. & Paolo
Dini (2008) ‘Governing diversity in
the digital ecosystem’, Communica-
tions of the ACM Forthcoming.

DBE (2007) ‘DBE project website’, URL:
http://www.digital-ecosystem.org/
Last visited 17 December 2007

DBE Studio (2007) ‘The DBE Studio is an
Integrated Development Environment
(IDE) for the Digital Business Ecosys-
tem (DBE). It includes eclipse plugins
that allow business services to be an-
alysed, and corresponding software
services to be defi ned, developed and
deployed’. URL: http://sourceforge.
net/projects/dbestudio Last visited 17
December 2007

de Laet, Marianne & Annemarie Mol
(2000) ‘The Zimbabwe bush pump:
Mechanics of a fl uid technology’, So-
cial studies of science 30(2): 225-63.

EveNet (2007) ‘Provides a P2P network
for guiding the evolution of software
services and service compositions
over time’, URL: http://sourceforge.
net/projects/evenet Last visited 17
December 2007

FADA (2007) ‘FADA is an autonomous
distributed directory of JAVA proxies
following the same philosophy than
Jini Networking Technology’, URL:
http://sourceforge.net/projects/fada
Last visited 17 December 2007

Feller, Joseph & Brian Fitzgerald (2000)
‘A framework analysis of the open
source software development para-
digm’, in S. Ang, H. Krcmar, W. J. Or-
likowski, P. Weill & J. I. DeGross (eds)
International Conference on Infor-
mation Systems (Brisbane, Australia:
58-69).

Fleck, James (1999) ‘Learning by trying:
the implementation of confi guration-
al technology’, in D. Mackenzie & J.
Wajcman (eds), The social shaping of
technology (Buckingham: Open Uni-
versity Press): 244-57.

Gordon, H. Scott (1954) ‘The economic
theory of a common property re-
source: The fi shery’, Journal of Politi-
cal Economy 62(2): 124-42.

GPL (2006) ‘GNU Public Licence’, URL:
http://w w w.gnu.org/copyleft/gpl.
html Last visited 17 December 2007

Grint, Keith & Steve Woolgar (1997) The
Machine at Work: Technology, work
and organization (Cambridge: Polity
Press).

Hanseth, Ole, Monteiro, Eric & Morten
Hatling (1996) ‘Developing informa-
tion infrastructure: The tension be-
tween standardization and fl exibility’,
Science, Technology, & Human Values
21(4): 407-26.

Hardin, Garrett (1968) ‘The tragedy of
the commons’, Science 162: 1243-48.

Himanen, Pekka (2001) The Hacker Ethic
and the Spirit of the Information Age
(London: Random House).

Kallinikos, Jannis (2002) ‘Reopening the
black box of technology artefacts and
human agency’, in L. Applegate, R. D.
Galliers & J. I. DeGross (eds) Inter-
national Conference on Information
Systems (Barcelona: 287-94.

Mary L. Darking and Edgar A. Whitley

Science Studies 2/2007

32

Kidder, Tracy (1983) The Soul of a New
Machine (Boston: Little, Brown).

Klein, Hans K. & Daniel Lee Klein-
man (2002) ‘The social construction
of technology: Structural consid-
erations’, Science, technology and
human values 27(1): 28-52.

Konda, Nagaraj, Shelton, Rod & Vic-
tor Bayon (2007) ‘Open SOA - Digi-
tial business ecosystem: Blog for the
DBE project’, URL: http://opensoa.
blogspot.com/ Last visited 17 Decem-
ber 2007

Kuk, George (2006) ‘Strategic interaction
and knowledge sharing in the KDE
developer mailing list’, Management
Science 52(7): 1031-42.

Latour, B. (2007) ‘Can we get our materi-
alism back, please?’ Isis 98(1): 138-42.

Latour, Bruno (1986) ‘Powers of associa-
tion’, in J. Law (ed) Power, action and
belief: A new sociology of knowledge?
(London: Routledge & Kegan Paul):
264-80.

Latour, Bruno (1996) Aramis, or the Love
of Technology (Cambridge, MA: Har-
vard University Press).

Latour, Bruno (2002) ‘Gabriel Tarde and
the end of the social’, in P. Joyce (ed)
The Social in Question. New Bearings
in History and the Social Sciences
(London: Routledge): 117-32.

Latour, Bruno (2003) ‘Is re-moderniza-
tion occurring-and if so, how to prove
it’, Theory, culture and society 20(2):
35-48.

Latour, Bruno (2005) Reassembling the
Social: An introduction to Actor-Net-
work-Theory (Oxford: Oxford Univer-
sity Press).

Law, John (1998) ‘After ANT: complexity,
naming and topology’, in J. Law & J.
Hassard (eds) Actor network and after
(Oxford: Blackwell): 1-14.

Law, John & Vicky Singleton (2005)
‘Object lessons’, Organization 12(3):
331-55.

Lee, Nick & Steve Brown (1994) ‘Other-
ness and the Actor Network: The un-
discovered continent’, American Be-
havioural Scientist 37(6): 772-90.

Mackenzie, Adrian (2005) ‘The perform-
ativity of code: Software and cultures
of circulation’, Information, Commu-
nication and Society 22(1): 71-92.

MacKenzie, Donald (1987) ‘Missile ac-
curacy: A case study in the social
processes of technological change’, in
W. E. Bijker, T. P. Hughes & T. J. Pinch
(eds) The Social Construction of Tech-
nological Systems: New directions in
the sociology and history of technol-
ogy (Cambridge, MA: The MIT Press):
195-222.

Management Science (2006) ‘Special
issue on Open Source’, Management
Science 52(7).

Mockus, Audris, Fielding, Roy T. & James
D. Herbsleb (2002) ‘Two case studies
of open source software development:
Apache and Mozilla’, ACM Transac-
tions on software engineering and
methodology 11(3): 309-46.

Monteiro, Eric (1998) ‘Scaling informa-
tion infrastructure: The case of next-
generation IP in the internet’, The in-
formation society 14(3): 229-45.

Moser, Ingunn & John Law (2006) ‘Flu-
ids or fl ows? Information and qual-
culation in medical practice’, IT and
People 19(1): 55-73.

Nachira, Francesco (2002) ‘Towards a
Network of Digital Business Ecosys-
tems’, URL: http://europa.eu.int/in-
formation_society/topics/ebusiness/
godigital/sme_research/doc/dbe_
discussionpaper.pdf Last visited 17
December 2007

Neyland, Daniel (2006) ‘Dismissed con-
tent and discontent: An analysis of
the strategic aspects of actor-net-
work theory’, Science, technology and
human values 31(1): 29-51.

33

Orlikowski, Wanda J. (2007) ‘Sociomate-
rial Practices: Exploring Technology
at Work’, Organization Studies 28(9):
1435-48.

Orlikowski, Wanda J. (2000) ‘Using tech-
nology and constituting Structures: A
practice lens for studying technology
in organizations’, Organizational Sci-
ence 11(4): 404-28.

Orlikowski, Wanda J. & Suzanne C. Iaco-
no (2001) ‘Research commentary:
Desperately seeking the “IT” in IT re-
search: A call to theorizing the IT ar-
tifact’, Information Systems Research
12(2): 121-34.

Pentland, Brian T & Martha Feldman
(2007) ‘Narrative networks: Patterns
of technology and organization’, Or-
ganization Science 18(5): 781-95.

Pinch, Trevor J & Wiebe E. Bijker (1987)
‘The social construction of facts and
artifacts: Or how the sociology of sci-
ence and the sociology of technol-
ogy might benefi t each other’, in W.
E. Bijker, T. P. Hughes & T. J. Pinch
(eds) The social construction of tech-
nological systems: New directions in
the sociology and history of technol-
ogy (Cambridge, MA: The MIT Press):
17-50.

Ratto, Matt (2005) ‘Embedded technical
expression: Code and the leveraging
of functionality’, The information so-
ciety 21(3): 205-13.

Stacey, Ralph D. (2001) ‘The science of
complexity: an alternative approach
to strategic change processes’, Stra-
tegic Change Management Journal
16(6): 477-95.

Stamelos, Ioannis, Angelis, Lefteris,
Oikonomou, Apostolos & Georgios
L. Bleris. (2002) ‘Code quality analy-
sis in open source software develop-
ment’, Information Systems Journal
12(1): 43-60.

Star, Susan Leigh (1991) ‘Power, tech-
nologies and the phenomenology of
standards: On being allergic to on-
ions’, in J. Law (ed), A Sociology of
Monsters (Oxford: Basil Blackwell):
27-57.

Star, Susan Leigh & Karen Ruhleder
(1996) ‘Steps toward an ecology of
infrastructure: Design and access for
large information space’, Information
Systems Research 7(1): 111-34.

Swallow (2007) ‘A peer2peer application
container that isolates the programer
form the peer2peer coding complexi-
ty’, URL: http://sourceforge.net/proj-
ects/swallow Last visited 17 Decem-
ber 2007

Swanson, E. Burton & Neil Ramiller
(1997) ‘The organizing vision in infor-
mation systems innovation’, Organi-
zation Science 8(5): 458-74.

von Krogh, Georg & Sebastian Spaeth
(2007) ‘The open source software phe-
nomenon: Characteristics that pro-
mote research’, Journal of Strategic
Information Systems 16(3): 236-53.

Whitley, Edgar A. & Mary Darking (2006)
‘Object lessons and invisible technol-
ogies’, Journal of information tech-
nology 21(3): 176-84.

Zmud, Robert W. (1980) ‘Managing large
software development efforts’, MIS
Quarterly 4(2): 45-55.

Mary L. Darking
School of Applied Social Science, Uni-
versity of Brighton, UK and Department
of Media and Communications, LSE
m.l.darking@brighton.ac.uk

Edgar A. Whitley
Information Systems and Innova-
tion Group, Department of Manage-
ment, London School of Econom-
ics and Political Science, UK
e.a.whitley@lse.ac.uk

Mary L. Darking and Edgar A. Whitley

