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Credulous Modellers and Suspicious
Experimentalists?
Comparison of Model Output and Data in
Meteorological Simulation Modelling

Mikaela Sundberg

This article studies the relation between two specialised practices in meteorology,
modelling and field measurements. This relation is embodied in a number of joint
practices of which model evaluation is one of them. The relationship between theory,
model and observation has been of concern for many philosophers of science
whereas the relationship between the working practices that underlie theories, mod-
els and observations, has received less attention. This paper describes and compares
the practices that generate observation data and model output and the way differ-
ent roles that fieldworkers and modellers have in this process are established. Next,
different practice-oriented perspectives on the status of models, data and experi-
ments are analysed and the discussion then moves on to the different trouble-shoot-
ing strategies scientists deploy, depending on their position within the discipline. It
is shown that these strategies are often based on the ideas and judgements that
modellers and experimentalists express about each other, and by implication, about
their own role in the meteorological enterprise.
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lated to the climate change question (see
Edwards, 2001). Some studies of climate
modelling have focused on the uncer-
tainties surrounding climate models
(Shackley et al., 1998; Shackley and
Wynne, 1996). Others have touched on
or analysed model evaluation. For exam-
ple, in concluding his discussion on vali-
dation of climate models, Edwards

Climate change has received a great deal
of attention in politics, media and re-
search. In climate research, climate
modelling is the most dominant ap-
proach. Climate models are originally
based on meteorological models of the
atmosphere and meteorology in general
and numerical weather prediction mod-
els in particular are therefore closely re-
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(1999) notes that the current results of
climate model evaluation hold that
large-scale features are well simulated by
current climate models (cf. Norton and
Suppe, 2001).1  A recent paper by Lahsen
(2005) centres on the distribution of un-
certainty around climate modelling, but
it also raises questions related to the dif-
ferent capabilities of experimentalists
and modellers to judge the performance
of, and thus the uncertainty surround-
ing, models. The purpose of this paper
is to analyse model evaluation, more
specifically comparison of model output
and data, in meteorology from a slightly
different angle by focusing on the differ-
ent social practices that are underlying
these scientific products. Meteorology is
an interesting case because of its crucial
role in defining the climate change prob-
lem, and also because of its reliance on
simulation modelling, which is a scien-
tific practice yet to be explored in more
depth.  This analysis takes its point of
departure in the relationship between
the two practices, simulation modelling
and field experimenting, and the two
groups of practitioners that orient them-
selves around them.

Scientific practice is a heterogeneous
enterprise, not only considering the dif-
ferentiation into disciplines but also
within them (Galison & Stump, 1996). If
we aim to recognise some of the hetero-
geneity of scientific practice, it is of fun-
damental importance to acknowledge
the internal diversity in terms of how sci-
ence is practiced and not to assume dis-
ciplinary unity, for example regarding
falsification and more generally, how
principles and practices contrast. Sev-
eral studies of scientific practice have in-
deed noted the various concerns of dif-
ferent groups of researchers within the

same discipline (Traweek, 1988; Galison,
1997; Saari, 2003). This paper seeks to
develop further how different activities
are related to different perspectives and
how this affects the relationship be-
tween groups of practitioners in mete-
orological research. What keeps them
together and what draws them apart?

From the point of view of an institu-
tional setting and structural conditions,
meteorology as a scientific discipline
can be seen as a social world. All activi-
ties that address a given set of coherent
and cohesive problems constitute a so-
cial world. It is a social whole in which
people construct shared ideas about
how to go about their business, but they
also conduct debates about both their
own activities and others that may affect
them (Becker, 1982; Strauss, 1978). How-
ever, if work and problems are empha-
sised, meteorology as a discipline (con-
ceived of as an institutional structure) is
no longer a “given” unit of analysis, es-
pecially since segmentation into sub-
worlds is an inevitable feature of social
worlds (Strauss, 1978).  In relation to seg-
mentation, boundary work may take
place. Boundary work is the discursive
attribution of selected qualities to scien-
tists, scientific methods and scientific
claims for the purpose of drawing a rhe-
torical boundary between science and
less authoritative perspectives, but it can
also be used to demarcate disciplines,
specialties or theoretical orientations
within science (Gieryn, 1999: 4f.).  Bound-
ary work is not a concept developed
within the social world tradition but
largely consistent with the approach.  In
intersections, resources, skills or infor-
mation flow between segments, or
subworlds (Strauss, 1978). Thus, bound-
ary work serves to demarcate, while in-
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tersections keep segments together.
Social worlds are actor-defined in the

sense that they permit identification and
analysis of collectives constructed as
meaningful by the actors themselves
(Clarke, 1991: 135). Thus, commitment
to a social world or subworld is an em-
pirical question. In meteorology, field
experimentation and simulation model-
ling contain important collective com-
mitments and constitute two subworlds
of meteorology. The concepts boundary
work and intersection will be used to
analyse their relationship.

Methodological Considerations

The analysis is based on a qualitative
study of meteorological research which
took place at the Department of Mete-
orology, Stockholm University (MISU).
MISU is the largest meteorological re-
search department in Sweden. Current
research activities at MISU represent
meteorology in a broad sense and in-
clude studies of both the lower parts of
the atmosphere (the troposphere in-
cluding the boundary layer) and higher
parts (the stratosphere) by using simu-
lation models to simulate atmospheric
processes or by conducting field experi-
ments. The study is limited to research
concerning the lower parts of the atmos-
phere. During 2003, I conducted partici-
pant observation, held numerous infor-
mal conversations and discussions with
research staff about their work and con-
ducted 19 tape-recorded interviews with
various researchers, doctoral students
and members of the technical staff. The
analysis of the paper is based on their
stories during interviews and to a
smaller extent on field notes from par-
ticipant observation. The narratives are

analysed either as descriptions of prac-
tice or as expressions of a perspective
based on practice (cf. Gubrium and
Holstein, 1997). During the analysis, the
development of themes and codes was
both data-driven and theory-driven
(Boyatzis, 1998: 51ff.). It involved an in-
ductive approach in identifying themes,
but theoretical guidance in their articu-
lation and development. Thus, model
evaluation and the different perspec-
tives on it became important primarily
during the analytical phase.2

Field Experimentation and
Simulation Modelling as Subworlds
of Meteorology

A major part of experimental field re-
search at the MISU concerns studies of
gases or particles and/or their interac-
tion with clouds in the lower part of the
atmosphere. These are small-scale proc-
esses where changes in time-scales on
the magnitude of seconds to hours are
significant. Field experimental work of-
ten takes place within large projects
which aim to organise field expeditions,
so-called field campaigns, at different
sites. On these occasions field experi-
mentalists with different backgrounds
participate and collect many different
types of data by using various types of
measuring instruments. For example,
different types of radiometers are used
for measuring radiation and various an-
emometers are used for measuring wind
velocity and fluxes. For particle meas-
urements, there are a variety of com-
monly used instruments, such as con-
densation particle counters and optical
particle counters. In addition to skills in
data interpretation, field experimental
work requires much technical and prac-
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tical knowledge, often achieved through
extended practice. During the phase of
interpretation, researchers try to figure
out what happened during the measure-
ments and often use data from other re-
searchers in the campaign to support
their case. Field experimentation is not
theory-free; the design of campaigns and
the interpretation of the data campaigns
produce are based on theoretical as-
sumptions, but these theories are gen-
erally not the same as those used to con-
struct meteorological simulation mod-
els. In the following, the use of models
in experimentation will not be dis-
cussed.

Whereas field experiments tend to be
concerned with details of processes,
simulation modelling tends to be more
concerned with generalities of larger
scale processes. In meteorological simu-
lation modelling, different types of simu-
lation models are used, both in terms of
the processes they aim at representing
and in terms of the complexity of these
representations, i.e. the resolution of the
model, the amount of process descrip-
tions, and the type and number of equa-
tions. Most simulation modelling at
MISU is conducted within the field of
dynamic meteorology and based on dy-
namic modelling of the lower parts of the
atmosphere. In dynamic meteorology,
moving air masses are regarded in the
same way as fluids in motion. In this type
of dynamic modelling, the full complex-
ity of the atmosphere is reduced to a
small number of physical laws. Numeri-
cal versions of the models are con-
structed in order to simulate the proc-
esses that these laws describe. In the
models, four non-linear differential
equations describe atmospheric dynam-
ics in atmospheric parameters, includ-

ing temperature, humidity, pressure,
and wind velocities in three directions.3

These equations cannot be solved ana-
lytically, i.e. it is impossible to write
closed form equations that would rep-
resent a unique solution to the set of
equations. In order to enable the con-
struction of a simulation model, the
equations are turned into difference
equations and by discretising the equa-
tions, modellers approximate the solu-
tion. Differential equations relate con-
tinuous rates of change over infinitesi-
mal intervals and discretisation relate
rates of change over finite, or discrete,
intervals. This enables computer calcu-
lations. The mathematical model (which
is also a theoretical model) is trans-
formed into an algorithm, and the dy-
namic model is turned into a computa-
tional (simulation) model (cf. Winsberg,
1999: 281f.). The results of computer
simulations are in the form of very large
data sets.

Computational models are based
upon a large amount of discrete points,
a grid, where approximated equations
are calculated in each point. The grid
results in a one-, two- or three-dimen-
sional model domain. In a one-dimen-
sional model, the points constitute a ver-
tical pillar or slice. In a two-dimensional
model, points are spread over an area.
The grid net in more advanced models
constitutes a three-dimensional volume.
General circulation models used in
weather and climate prediction have a
global grid and exemplify these types of
models. Because the models are prog-
nostic they also include a time dimen-
sion.

The resolution of a model refers to the
distance between the grid points. In dy-
namic, atmospheric models, it is gener-
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ally coarse. In three-dimensional mod-
els used for research purposes only, the
horizontal distance between grid points
ranges from about half to a few kilo-
meters. At MISU, simulation models
with different number of dimensions are
used and the most advanced models are
three-dimensional limited area models.
A few of these models are also used for
routine weather forecasting at other lo-
cations, but this paper focuses on simu-
lation modelling for research purposes.

The researchers refer to themselves as
“modellers” or “experimentalists” re-
spectively and very few of them partici-
pate in both modelling and experimen-
tal activities. Several doctoral students at
MISU, mainly from experimental
groups, mentioned that they strive to
include both modelling and measure-
ments in their dissertation work, but
their ability to do so is constrained. For
example, limited time makes it difficult
to learn both how to use and interpret
measurement technology and to set up
and run a model, because both activi-
ties require a long time to master. As a
consequence, people become socialised
into either the subworld of experiment-
ing or modelling.

The different activities involving
measuring instruments and simulation
models create divergent practical inter-
ests and concerns. Most modelling and
experimenting take place independent
of each other and many researchers con-
sider the distance between modelling
and experimenting as a problem. The
quote below is an example.

A big dilemma within meteorological
research is that the experimentalists are
over here [the researcher points his
hands to the left] and do their stuff,
while the modellers are here [the re-

searcher points his hands to the right]
and do their things. Then they meet
sometimes, and it is often so that it is
the modellers who meet the experi-
mentalists because they want data so
that they can test their models. It is
more unusual that the experimental
meet the modellers because they want
something. (Bill, modeller, interview)

Consequently, modelling requires data
as a resource in order to test models. The
principal way to evaluate the perform-
ance of a model is to compare simula-
tion output with observations, in other
words, the products of simulation mod-
elling and field experimentation. This
creates an intersection between model-
ling and experimenting. In the following,
I analyse this intersection more in detail
focused on the relationship it creates be-
tween modelling and experimenting.

Comparing Simulations and Data:
“Falsification” Re-negotiated

In simulation modelling, models are used
to explore and learn more about features
of the atmosphere. In that sense the mod-
els are studied in the same way as a natu-
ral system and the model plays the role
of an epistemic object – a question-gen-
erating tool of investigation (Rheinberger,
1997; Merz, 1999; Morrison and Morgan,
1999). However, simulation models used
for exploration are also evaluated ac-
cording to their ability to reproduce ob-
servations, even if agreement between
output and observations is often sec-
ondary for the purpose of gaining knowl-
edge and understanding (simulated) at-
mospheric processes.4

Simulations produce output divided
into many variables, for example, tem-
perature and wind velocity. All of them
should, at least in principle, be com-
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pared to observation data. For example,
it is stated in one article:

Since the modelling system is so com-
plex, it is complicated to perform a to-
tal validation of the entire system si-
multaneously. It also requires a very
large and detailed dataset of all de-
pendent variables. During the develop-
ment stage, every part of the model was
tested and compared to observational
data... A number of validation experi-
ments were performed for the mete-
orological part of the model for differ-
ent types of terrain and surface condi-
tions. (Svensson, 1996: 645)

This shows how comparison of all out-
put variables with data is a very time-
consuming task. Depending on the type
of simulation, different data is used for
comparison.  I primarily discuss evalu-
ation of research models with experi-
mental data from field campaigns in or-
der to focus on the relationship between
experimentation and modelling.

In scientific publications, model
evaluation is often referred to as model
validation, but recent discussions, both
among scientists and social scientists,
have illustrated confusions and uncer-
tainties that accompany model valida-
tion (Oreskes et al., 1994; Randall and
Wielicki, 1997; Shackley et al., 1998;
Küppers and Lenhard, 2005). Some
modellers at MISU refer to Popper’s fal-
sification doctrine, which holds that sci-
entific hypotheses can be proved false,
but not proven true, when they speak of
model evaluation. For instance, one
modeller said, “Popper is very basic. All
theories are good until they are dis-
proved and fall. It’s the same thing here.”
(Britt, modeller, interview) Furthermore,
some modellers suggest that output
should be compared to measurements
every time a model simulates a new case

because they argue that it is impossible
to show that a simulation model is suc-
cessful (in reproducing observation val-
ues) once and for all. One modeller em-
phasised:

You can only invalidate a model. It
doesn’t matter how many datasets you
use to interpolate your numerical
model with. It’s enough with one sin-
gle dataset that the model can’t deal
with and the model is out. You can
never validate a model. You may know
that a model works for this particular
lapse of events, at this particular place,
during these certain conditions, but
one can never know how it would work
to apply it on another phenomenon at
a completely different place. (Bo,
modeller, interview)

However, models do not seem to be “in-
validated” or declared inadequate on the
basis of observations (cf. Shackley and
Wynne, 1996: 284). Although modellers
hold that models can be invalidated but
not validated in principle, they neither
verify nor falsify models in practice. This
discrepancy is not surprising consider-
ing earlier sociological research about
science. First, sociology of science has
strived to show that neither the princi-
ples of classic epistemology nor Merton’s
(1938/1970; 1973) norms of science gov-
ern how science is actually produced
(Mulkay, 1969; 1975). Second, scientific
practice cannot be explained by rational
criteria only (Bloor, 1976; Bourdieu,
1977: 19). Whereas the rhetoric of rules
in general (not particularly in science)
tends to be invoked for legitimating pur-
poses and often has its own logic, the
logic of practical work may be another
(Bourdieu, 1998). Mere rules cannot ex-
plain practice (Turner, 1994). Thus, the
need to be critical towards scientists’
statements to outsiders about their work
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is perhaps most evident regarding scien-
tists’ appeals to norms or “rules” of sci-
ence, such as Popper’s falsificationism.
However, even if these rules are not fol-
lowed, it does not mean that the refer-
ence to Popper must be regarded as
merely empty rhetoric, independent
from the scientists’ understanding of
their own practice.

Mulkay and Gilbert (1981) have ana-
lysed scientific practice in relation to
Popper’s ideas regarding how much sci-
entists know about Popper, if they use
Popper’s rules and in that case how, and
also how to understand scientists’ refer-
ence to Popper. They conclude that sci-
entists disagree on the meaning of
“Popperian” method and rules and that
the general issues of how particular acts
are related to rules are indeterminate.
My analysis shares some of the conclu-
sions of Mulkay and Gilbert’s (1981) pa-
per, but it focuses on the relationship
between simulation modelling and field
experimentation, embodied in the activ-
ity of model evaluation, by illustrating
how modellers “defend” modelling and
simulation models in different ways.
Thereby they bolster the belief in mod-
els in spite of lack of agreement with data
(cf. Evans, 1997: 414ff.; Star, 1985).

Attributing Problems to Data and
Experimental Work

There are various problematic issues re-
lated to access and use of data in com-
parison with model output. One prob-
lem is lack of “useful” observations, from
a modelling perspective.

For example, some parameters of
(modelling) interest are very difficult to
measure, some even impossible, and
these problems are especially evident in

the case of inhospitable locations where
field campaigns are difficult to organise.
Moreover, whereas many measurements
with simple standard equipment are
preferable in order to compare model
output with data, experimental projects
benefit from more advanced instru-
ments as additional equipment in order
to study particular processes. Thus,
modelling and experimenting do not
benefit from the same types of measure-
ments.

Experimentalists also point out that
modellers’ lack of (useful) data is caused
by their ignorance about what measure-
ments experimental practice can offer,
both in terms of what, where and how.
According to experimentalists, model-
lers therefore expect results that are in-
compatible with what measurements
can produce, or do not strive to adjust
models to that. One experimentalist
stated:

It is important that the models are con-
structed in such way so that it’s possi-
ble to use existing data... In this case,
much work on modelling is made on
unhealthy grounds. To test a certain
aspect would require a million air-
planes at the same time in the air. Many
modellers simulate things that we do
not have the conditions to... test or sup-
port [by using data]. (Eric, experi-
mentalist, interview)

In spite of the fact that it is difficult to
compare output from models with exist-
ing observations, the modellers I inter-
viewed did not prioritise rectifying this
stated deficiency. For example, one
modeller said that it is too time-consum-
ing to (re-)construct models with the
purpose of making better use of obser-
vations. Simulation models develop
gradually and contain standardised
ways of working with them in their con-
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struction. When modellers implement a
new part in the simulation model, pro-
gramming the computer and making the
model work as a whole takes a lot of time.
Because the model is dynamically con-
sistent, everything depends on every-
thing and new implementations may
disturb the previous balance by creating,
for example, unforeseen interactions be-
tween different parts of the models.  In
the modelling view, these problems
should be considered when campaigns
are designed rather than expected to be
dealt with by changing models in order
to accommodate data.

Furthermore, a lot of information
from measurement instruments is not
meaningful for modelling purposes, as
the following quotation suggests:

Of course there are possibilities to ex-
tract information in the models in a
way that makes it more comparable to
the measurements that are taking
place. But... as long as you speak of ba-
sically all models from the meso-scale
and up, that’s in the scale from a few
kilometres and more, the information
that you measure in detail with, for in-
stance, aerosol instruments; that infor-
mation does not exist in the model. It
doesn’t work to modify the model in
order to give that information. (Bill,
modeller, interview)

This quote suggests that adjusting mod-
els in order to enable better comparisons
with data from campaigns is, in many
cases, not considered to be an option
from within modelling. On the other
hand, some think that it is experi-
mentalists who should take into consid-
eration if their data is needed for mod-
elling purposes. One respondent, who is
one of the few who works both with
measurements and modelling (but
mostly with the former), stated:

Both camps have a great responsibility
to find out what type of data is needed
for the existing model. A typical social
behaviour on the measurement side is
that once you learn to make a certain
measurement, you want to do that for
the rest of your life and defend this with
that you need these measurements,
continuously, without having the
slightest idea how they can be used for
existing models. (Edwin, experi-
mentalist, interview)

This quotation re-addresses the divide
between experimentalists and modellers
(“both camps”) and their lack of com-
munication. It also implies that experi-
menting should be more directed to-
wards the interest in modelling. The sig-
nificance of boundary work lies not only
in the position of a putative boundary
but also in the kinds of order it implies
(Shackley and Wynne, 1996: 293), in this
case it can be related to who is consid-
ered to be “support personnel” (Becker,
1982). Because modelling to some extent
relies on data from experimenting,
experimentalists can be seen as support
personnel in relation to, and from the
point of view of, modelling.  From this
perspective, it is reasonable for model-
lers to expect that experimentalists
should take modelling work more into
consideration when planning their
measurements and when processing
raw data, especially since modellers
sometimes cannot use data because it is
not refined or calculated into the quan-
tities that modelling requires.  Modellers
also generally lack the knowledge to
make use of raw measurement data.
(Randall et al., 2003). However, these ex-
pectations are not in agreement with the
self-perception of experimentalists, who
do not feel obligated to spend additional
time on data processing to support mod-
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elling. The experimentalists rather want
to start interpreting the measurements
they are interested in as soon as possi-
ble. In their view, data processing is a
boring, routine job, not accountable as
“science”. This is illustrated by the fact
that if possible, data processing is
handed to technical personnel like en-
gineers and laboratory technicians or
doctoral students to be done. They act
as support personnel in the experimen-
tal subworld.

The view on support can also be re-
lated to the difference in status between
modelling and experimenting in terms
of the different types of work it involves.
For example, one modeller said the fol-
lowing about modellers’ and experi-
mentalists’ respective views on the other.

I think that those who are more theo-
retical, or those who are modellers, who
sit and run their models, they some-
times think... that those who are out
measuring, they do not care about
theories about why it is like this. They
are just out measuring and they write
about what they measure and it is as
simple as that.  (Bob, modeller, inter-
view)

The view of modelling as “theoretical”
and experimentation as “technical” as-
sociates modelling with conceptual
work and experimentation with less
prestigious gadget work (hands-on
work) (cf. Star, 1995; Fujimura, 1987) and
it is another illustration of  boundary
work that serves to demarcate between
modelling and experimenting.

The discussion above exemplifies how
the expectations of modelling are to
some extent incompatible with the
problems that the experimental sub-
world seeks to pursue (cf. Clarke and
Gerson, 1990). However, when model-

lers actually find measurement data that
they consider useful, there seems to be
few conditions when data can contest a
simulation model.  In spite of a princi-
pal view that available data should be an
authoritative source compared to model
output - if the measurement technique
is successful, if the instrument has been
calibrated properly, or if there is not an
error in the instrument - there seems to
be many reasons to neglect this princi-
ple in practice. In fact, modellers tend to
emphasise the problems and errors in
data, rather than potential problems in
modelling (cf. Shackley and Wynne,
1996: 284).

Shifting Focus: Attributing Certainty
to “The Physics” of the Simulation
Model

In addition to data comparison and the
replication of observed patterns as a
measure of the capacity of the model,
modellers point at “the physics of the
model” as important in order to judge
its qualities (cf. Küppers and Lenhard,
2005). One modeller said that if the
simulation model would “absolutely
not” reproduce the observations one
would ask: “Can the physics of the model
really recreate those measurements, the
phenomena you want to recreate? We
know it can. All the physics are in this
model, so it’s cool.” (Betty, modeller, in-
terview) She continued that there is,
however, always a question about the
resolution and that the resolution can
cause problems in terms of data agree-
ment. This statement illustrates two
points. First, if the “physics” of the simu-
lation model is considered as good, it is
acceptable with a performance not com-
pletely in agreement with data. Second,
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there seems to be an assumption that
lack of agreement is a consequence of
the features of simulation models that
surround this basic structure, such as the
code or, as in this citation, the resolution,
not of some problem in the “physics”
(Merz, 1999). Not everyone agrees upon
this however. One modeller claimed:

I know I can study the problem I want
to study with this model, but when you
have submitted articles, someone has
said that you can’t do this with that
model. But then you have arguments:
Yes I can do it with this model because
of this and this. But everyone does not
believe in models and you should be
sceptical about what you get out of it.
But if you can argue from a physics
viewpoint why you can use a model, it’s
okay. (Bob, modeller, interview)

This quote exemplifies how the claim
that “the physics” of the model is correct
is a claim that mobilises a form of theo-
retical resource bound to a cumulative
notion of scientific knowledge. In a so-
cial setting such as a seminar, it is easier
to question the agreement between the
lines representing model output and
data in diagrams and figures than to
question accepted theoretical state-
ments and physical laws. Consequently,
by referring to “the physics” of the
model, modellers refer to statements or
“laws” with such a status that single disa-
greements cannot question them. 5   The
possibility to act as a successful dissenter
is also limited by the activities in the
subworlds and the knowledge and skill
they require (cf. Collins and Yearley,
1992). One experimentalist said that the
experimentalists are lost “if the model-
ler starts writing some horrible formula
that the measurement specialist perhaps
remembers from studies ten years ago”
and alternatively, if experimentalists

“start talking about a sophisticated de-
tector that makes a new type of meas-
urement, then there are many who feel
lost in the modelling camp” (Espen,
experimentalist, interview). This does
not mean that researchers are incapable
of judging research results based on
other methods than their own, but that
the way results are discussed, defended
or attacked, including what counts as an
adequate response, are likely to depend
on whether the dissenter is part of the
same subworld or not.

Important to note is also the difficult
trade-off between producing the best
possible correspondence to observa-
tions and paying strict attention to the
best physical construction of models.
One modeller noted “It is a paradox that
the [models] which are good at making
weather forecasts are not good at mak-
ing  physically correct forecasts.” (Benny,
modeller, interview) However, since op-
portunistic tuning – adjusting the value
of parameters and coefficients in order
to make model output agree better with
“expected” values - sometimes contrib-
ute to the better results of forecast mod-
els, “too much” agreement with data is
actually likely to create suspicion, as
opposed to confidence (cf. Randall and
Wielicki, 1997: 405). Consequently, be-
cause of modellers’ “common knowl-
edge” that the best physical models are
not the best forecast models, reference
to tuning of operational models can be
used to defend simulation modelling for
research purposes, instead of question-
ing it.

Problematizing the Comparison

When modellers have observations they
find useful to compare, they make dia-
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grams to compare curves from data and
output visually, in addition to or instead
of using statistical tools.  Numbers have
to agree at the same moment in time and
modellers do not find that correlation
measures can deal with this satisfacto-
rily.  Modellers suggest that experi-
mentalists and modellers have different
ideas about what constitutes acceptable
and reasonable agreement with data,
including what can be expected from
models in terms of this. For example, one
modeller showed me a diagram with two
curves, representing the result of a
model simulation and observations. He
said that for him, the model agrees with
the observations, but for an experi-
mentalist it would not, because the
curves were not identical. According to
this modeller, “people with no experi-
ence of modelling” do not know what a
“good” result is and they complain that
models are “bad” if they do not repro-
duce observed values precisely because
they expect models to “exactly repro-
duce reality” (as they measure it).6  Mod-
ellers perceive that experimentalists
have unrealistic ideals about what mod-
els can accomplish in terms of data-
agreement. From an experimental view-
point, models reduce too much of the
complexity. However, in grant proposals,
it is evident that a lot of field experi-
mentalists motivate their research by
pointing at the lack of detail in simula-
tion models (in particular climate mod-
els) and their aim to improve it (Sund-
berg, 2005: Ch. 8). Their criticism is thus
best described as ambivalent (cf. Lahsen,
2005: 915) and the different scientific
groups also live side-by-side; strengthen-
ing each other’s credibility and usefulness
(cf. Pinch, 1980).

One reason why modellers and

experimentalists have different opinions
about how well output and data agree
can be traced to different foci on “details”
and accuracy within modelling and ex-
perimenting (cf. Lahsen, 2005: 899, 913).
An example from a workshop serves to
show how experimentalists look more
into details compared to modellers. The
coordinator of a field expedition organ-
ised the workshop in order to interpret
data collaboratively. A few invited re-
searchers participated, including a mod-
eller, as well as some people from the
department who were not part of the
project. At one occasion, everyone was
looking at a diagram based on measure-
ments of temperature and humidity and
the modeller said to one of the experi-
mentalists: “I would say that nothing is
happening, but with your level of detail
it’s actually an inversion”. On another
occasion, the participants looked at the
result of a simulation of air mass trajec-
tories, depicted in diagrams and as lines
on a map with the measured area in the
centre. One of the experimentalists
started to develop an interpretation of
measurements in relation to the trajec-
tories, but he was interrupted by two
participating modellers who claimed
that it was impossible to base interpre-
tations on such a “detailed” reading of
the model result. Simulations indicate
directions rather than exact trajectories.
Thus, different interest in details or ac-
curacy is in fact also a reflection of the
different kinds of information that mod-
els and measurements can offer.

In addition to the different ideas
about what constitutes an agreement –
in part related to how detailed the analy-
sis should be – it is not self-evident what
is being compared. One researcher said
that she and her colleagues who work
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with satellite measurements joked that
comparing clouds detected by satellites
and clouds produced by models is like
comparing apples and pears: They are
both fruits but slightly different. A mod-
eller reflected upon what is measured
and said:

What is a measurement point really
representing? Is it a point you meas-
ure... If you consider putting up a meas-
urement instrument for wind on one
side of the house it is obvious that if it
blows on the other side, the measure-
ments are not good... But it is the same
thing that makes it different when you
measure chemical elements too. If you
measure close to a road and there’s traf-
fic pollution, then you will measure
higher values there than what it really
is... When you then put it in the model,
it is perhaps one time one kilometre
over two meters. That’s not what you
measured over the road. So you can
never say that you have precise corre-
spondence to measurements. This is
usually difficult to understand: What
the models say and what the measure-
ments say and how to compare them
in a reasonable way. (Bernie, modeller,
interview)

The modeller quoted above said that
measurements made in close proximity
of a road give “higher values than it is
really”. But really where? The volume in
the simulated atmosphere is a conse-
quence of the mutual adjustment of
theoretical presuppositions and compu-
ter sources. A “representative” observa-
tion would be “representative” of the
average value of this volume in the simu-
lated world, but to be “representative” in
this way has no meaning in relation to
field experimental work – it is an inter-
nal modelling reference. Thus, this is an
additional example of how modelling
and experimental perspectives contain
different viewpoints regarding what con-

stitutes a “good”, “useful” observation.

Conclusions

The analysis above has illustrated some
of the heterogeneity within the meteoro-
logical discipline, based on a qualitative
study of a meteorological research de-
partment. More specifically, the paper
has analysed the relationship between
simulation modelling and field experi-
menting, and the two groups of practi-
tioners that orient themselves around
them. My point of departure for this
analysis has been comparison of model
output and data, which constitutes an
intersection between the practices.
Partly because of the falsification prin-
ciple, comparison is important in prin-
ciple, but it is less so in practice. Model-
lers identify various problems with data
and “defend” the result of models in
spite of lack of agreement with data, in
part by pointing at the theoretical con-
struction of the simulation model. While
it is not openly suggested, the value of
comparison sometimes seems doubted.
There are also disagreements between
experimentalists and modellers about
what constitutes agreement between
model output and data.

The examples contain different levels
of reasoning which highlight different
aspects of the relationship within the
social world of meteorology. The con-
stant re-production of the boundary be-
tween modelling and experimenting is
salient in the scientists’ accounts. These
accounts enforce stereotypes and exem-
plify boundary work that re-produces
experimentalists and modellers as par-
ticipants in two different subworlds of
meteorological research. The stories also
show how the rhetoric of positivistic sci-
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ence is built into the scientists own un-
derstanding of their work, i.e. their per-
spective. Yet how modellers deal with the
falsification principle in practice is af-
fected by the work they do.  Modellers’
defence of models serves to legitimise
modelling practice, but it is not only
rhetoric to convince outsiders. The de-
fence also expresses practical thoughts,
and a shared modelling perspective,
based on the common activities that
modellers are involved in.

The analysis of comparison of output
and data thus illustrates how activities
within a social world can be debated and
acknowledges the internal differences
and patterns of commitment in meteor-
ology.  In practice, modellers seem to
take the basic credibility of models for
granted (cf. Shackley and Wynne, 1996:
285). Lahsen (2005) even implies that
modellers have to take the credibility for
granted for the sake of their careers,
which are based on the performance of
their models.  In his study of artificial life
simulators, Helmreich (1998) in fact sug-
gests that the distinction between the
model and the real world sometimes
becomes blurred for modellers (cf.
Lahsen, 2005: 910 ff.). From within an ex-
perimental perspective, however, knowl-
edge about the real world is based on
measurements and consequently,
experimentalists evaluate the repre-
sentative qualities of simulation models
compared to data.  To convince experi-
mentalists (and others) that models are
adequate descriptions of the atmos-
phere is a way for modelling to establish
itself as legitimate in the larger discipli-
nary world of meteorology and it is nec-
essary in order to keep the social world
intact (cf. Gerson, 1983: 366f.).

While Lahsen (2005) suggests that

experimentalists are (sometimes) better
at judging the shortcomings of models,
my point is that the different way experi-
mentalists and modellers work with and
understand simulation models and data
shapes what it means to be a “good”
simulation model or “good” data. The
contents of these qualities depend on
whether you measure or simulate. From
a social world viewpoint, it is the prac-
tice-based understandings rather than
any abstract criteria that are of impor-
tance. Philosophers of science question
comparison with data as an autono-
mous criterion by which simulation
models are to be judged (Winsberg,
1999; Zeigler, 1976), but questions re-
lated to how model evaluation should
take place are secondary from the socio-
logical perspective employed in this pa-
per (cf. Becker, 1996: 54f.). In addition,
attempts to translate philosophical con-
clusions into rules of scientific action are
misleading if it is not recognised that a
major transformation of perspective is
involved (Mulkay and Gilbert, 1981).
While much of philosophical analysis of
scientific knowledge aims at recon-
structing the logical structure of the end
products of scientific work, scientists
themselves are rather involved in mak-
ing a contribution to a science (Mulkay
and Gilbert, 1981: 128), or in other
words, science in action (Latour, 1987).
To analyse the relationship between the
social practices of modelling and experi-
menting from the point of view of com-
parison of model output and data is a
way to understand the practical signifi-
cance of the falsification principle and
to see how it is embodied and negotiated
in practice. Hence, this paper contrib-
utes to existing knowledge of simulation
modelling by addressing how modellers
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relate to epistemological standards, at
the same time as it is clear that episte-
mological standards themselves are ill-
suited for describing what scientists ac-
tually do.

Finally, if this analysis of meteorology
is regarded as a case study of the rela-
tionship between simulation modelling
and field experimentation, it should be
acknowledged that if these practices dif-
fer within different scientific disciplines,
this probably affects how comparison of
output and data is discussed and
practiced. For example, in many scien-
tific fields, simulations are performed in
order to learn about systems for which
data are sparse and comparison with
data obviously become more difficult to
practice. In other cases, simulations as-
sume a world in which the results of the
simulation are implemented. This illus-
trates an important difference between
the simulations in, for example, particle
physics (Merz, 1999) and meteorologi-
cal simulations. Particle physicists may
simulate an existing detector and there-
fore, the detector and the simulation
model constitute partial objects of the
epistemic object (Knorr Cetina, 2001). In
meteorology, it is possible that the close
relation between meteorology and
weather forecasting has produced an
emphasis on the predictive capacities of
meteorological simulations, even when
simulations do not have a weather pre-
diction purpose. This may be another
aspect that keeps field experimentation
and simulation modelling practices to-
gether. Thus, special characteristics of
the discipline should be considered in
order to understand simulation model-
ling practices and perspectives, while
more general patterns of simulation
modelling are also important to explore.

Notes

1 Thus, the idea that model output “should”
agree with data is taken as a point of de-
parture because it is an idea among the
researchers, not a statement by the au-
thor.

2 I use quotes and descriptions from field
notes to illustrate and support my case.
Most interview quotes have been trans-
lated from Swedish. In order to protect the
anonymity of my informants, I do not in-
form about translation. Excluded words or
sentences are marked with ... . See Chap-
ter Three in Sundberg (2005) for further
details about the study.

3 The first equation, the Navier-Stokes
equation, is based on Newton’s first law
(force equation). It is used to tell how
much wind velocity changes with time
and it can be used for fluids and gas, like
air. The second equation is based on the
first law of thermodynamics and tells how
much the temperature changes with time.
The equation of state is the point of de-
parture for the third equation. It indicates
the relationship between pressure, tem-
perature and density. The continuity
equation tells how much density changes
with time, based on the law of the main-
tenance of mass. These equations are re-
lated to one another in a way that requires
them to be calculated step-by-step to-
gether.

4 Compare Boumans (2006) discussion of
different types of model use in econom-
ics.

5 As Boumans (1999) has discussed, built-
in-justification is another reason for mod-
ellers to believe in their models. In this
paper, I only discuss belief in relation to
the comparison with data, which follows
from my material on model evaluation
and my interest in the relationship be-
tween modelling and experimenting.

6 On the interpretational flexibility of rep-
resentations see for example Lynch and
Woolgar’s (1990) collection of essays on
representations in science.
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