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Introduction
Scientific expertise and moral values are intricately 
interwoven in the process of knowledge produc-
tion (Shapin, 2008). Both federal funding agencies 

and academic researchers need to attest to the 
relevance of their technological and intellectual 
products by addressing the question of social rel-
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The question of how professional and lay communities develop trust in new technologies, and 
automation in particular, has been a matter of lively debate. As a charismatic technology, artificial 
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forecasting community, but also among the public. I show that first, to better understand how scientific 
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of how the professional identity of those experts has been shaped by a relationship with computer-
supported modeling. To this end, I situate the discussion in the long-standing tensions between 
computer modelling and tacit knowledge in weather forecasting. Second, I argue that the means of 
establishing trust in A.I. propagated by the actors in the paper, which pair norms of explainability 
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tailoring the ethics of A.I. to the specific requirements of weather sciences, but also to the vision of a 
national strategy of investment in this technology.
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evance and ethical standards. This is the case with 
applied computational researchers. The question 
of how conceptions of ethics are legitimated and 
institutionalized gains critical importance during 
the contemporary acceleration of research on a 
form of artificial intelligence (AI) called machine 
learning (ML), as ML has proven to create episte-
mological and normative disruption in sciences 
and other professional fields (Kitchin, 2014). Ethics 
of design of algorithms and automation systems 
has been a site of an ongoing debate in and out of 
the academy (e.g., Dubber et al., 2020; Metcalf and 
Moss, 2019; Mittelstadt et al., 2016). 

This paper explores the processes through 
which researchers working on applying ML to 
socially relevant issues legitimize and institu-
tionalize their work by tailoring research to the 
emerging standards of ethics of AI. This discussion 
is empirically grounded in a partnership between 
AI researchers and weather forecasters. Weather 
forecasting is a generative site for theorizing how 
AI becomes embedded in scientific domains due 
to the long-standing tensions between computer 
modeling, automation, and tacit knowledge in 
the field—a jurisdictional struggle that AI has a 
capacity to exacerbate.

In this light, there is a need to understand better 
the processes through which ML and other forms 
of data-driven science become legitimized and 
institutionalized within domains where ML has 
previously played a marginal role. Furthermore, 
the paper asks: how do organizations involved 
in AI development resolve a tension between 
adapting external standards of ethics versus 
developing their own situated standards? I offer 
an analysis of the United States National Science 
Foundation’s (NSF) Trustworthy AI Institute, which 
was established in 2020. The Institute has begun 
to develop ML for environmental sciences and 
weather forecasting. The bedrock of the Institute’s 
operations is a design of ML that various commu-
nities of practice and potential users can trust. In 
this sense, the Institute’s leaders attempt to frame 
the Institute as a mediating organization with the 
goal of increasing trust in the use of AI among 
environmental scientists, weather forecasters, and 
the public, but also to forge a closer partnership 
between the data analytics industry, government, 
and academia. This reworking of disciplinary and 

professional boundaries is centrally concerned 
with enabling innovation (Rottner, 2019) in the 
ability to predict future environmental condi-
tions. The analysis of the Institute’s multi-sector 
and multidisciplinary model is of relevance to the 
contemporary political and environmental milieu 
in which trust in the accuracy of weather and 
climate predictions is of high stakes.

The article explores how the conceptions 
of ethics, trust, algorithmic explainability, and 
adherence to the laws of atmospheric physics 
intersect in the design practices and discourse 
at the Institute. I show how a team of experts in 
AI, earth sciences, and risk assessment who were 
behind the Institute’s formation set in motion a 
vision of the future of weather forecasting. This 
vision strives to fit into the prevailing imaginary of 
AI development and mitigate the mistrust in the 
technology among weather forecasters. Today’s 
mistrust in AI on the part of the weather predic-
tion community is a product of the long history 
of the external influence of computer science 
and modeling, which for over seven decades now 
has been shaping the identity of weather fore-
casters as an independent profession. I integrate 
a historical discussion into the article to locate the 
Institute’s endevours within an established in the 
historiography of weather prediction theme of 
anxieties about automation and modelling.

The core theoretical contribution of the paper 
is a framework that describes stages of top-down 
and bottom-up ‘mutual orientations’ (Edwards, 
1996) between a group of researchers and a 
federal funding agency towards institutionaliza-
tion of an ‘alternative expertise network’ (Eyal, 
2013) through reliance on a vision of civic, ethical, 
and trustworthy science. To do this, I appro-
priate the concept of ‘mutual orientation’ from 
a historian of science, Paul Edwards (1996). The 
concept means to capture a process of simulta-
neous alignment of objectives between a funding 
agency and a fundee. One of the reasons I choose 
to locate this inquiry on the case of implementa-
tion of AI in weather forecasting is the fact that the 
fears of “technological unemployment” (Keynes, 
1930) are a long-standing issue in the history 
of weather forecasting (Harper, 2012). As such 
enduring conflicts between automation and tacit 
knowledge (Polanyi, 2009) can easily be ignored, 
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one of the intended takeaways of the paper is to 
raise awareness about the need to consider disci-
plinary histories when analyzing the contempo-
rary uptake of AI.

Methodology
To construct the paper’s argument, I have relied 
on primary sources, including publicly available 
documents about the Institute (i.e., public pres-
entations, online reports, calls for proposals) and 
peer-reviewed work of the Insititute’s members. I 
transcribed recordings of Institiue-wide meetings, 
which I gained with the permission of the insti-
tute’s directorate, and analyzed the transcripts 
according to the principles of content analysis. 
Furthermore, I used discourse analysis to capture 
policy discourses of the US AI strategy through 
reading NSF’s and National Research Council’s 
publications on trustworthiness. My reconstruc-
tion of the history of anxieties about automation 
in weather prediction was based on the reading of 
secondary literature. 

Methodologically, I drew on a tradition of the 
social construction of technology (SCOT) (Pinch 
and Bijker, 1984) and the sociology of technolog-
ical and scientific movements (TSIMs) and alterna-
tive expertise networks (Frickel and Gross, 2005). 
By adapting perspectives of the SCOT school of 
Science and Technology Studies (STS), I was able 
to examine processes of interpretative flexibility 
of trustworthy AI frameworks and the dynamics 
between designers and users of technology. 
Taking notice of the latter clarifications of the 
SCOT approach (Bijker, 1997), I attempted to pay 
special attention to shared ‘technological frames’ 
between designers and users of technology 
(trustworthy AI framework was one such framing 
device). I supplemented the SCOT methodology 
with a form of historical-sociological reconstruc-
tion of an alternative expertise network to capture 
its dynamic unfolding and a ‘mutual orientation’ 
towards an institutional (NSF’s) vision of tech-
nology development.

This paper responds to scholarship parsing 
the problem of how trust is established between 
different groups of scientists and between users 
and designers of technology. The problem of 
mistrust among scientists most often emerges 

when groups of experts compete over the ‘juris-
diction’ (Abbott, 2014[1988]) for a specific task. 
Sociologists of expertise (Eyal, 2013) have asked 
how the ‘jurisdictional struggle’ between science 
and nonscience produces different forms of legiti-
mation and institutionalization (Epstein, 1995, 
2008; Gieryn, 1983; Star and Griesemer, 1989). I 
build on the contributions to this literature which 
focus specifically on how the creation of new and 
alternative expertise networks influences specific 
disciplines (Collins et al., 2007) and the problem 
of the jurisdictional struggle between scientific 
experts. Furthermore, to understand how the 
members of the Institute use trust as a ‘boundary 
object’ (Gieryn, 1983) in the process of institu-
tional mutual orientations, I draw inspiration from 
the scholarship in science studies on the effect 
of organizations as meso-level structures which 
triangulate between scientific domains, national 
governments, and the industry (Vaughan, 1999; 
Guston, 1999).

Situating trust in sociology 
of expertise and social 
studies of algorithms
Trust is a key component of scientific practice 
(Shapin, 1994; Porter, 2020 [1995]). And while 
Anthony Giddens (1990) argued that trust is a 
defining feature of modernity, we live in an era of 
increasing mistrust in science (Eyal, 2019; Oreskes, 
2019; Nichols, 2017). In the context of science 
done at the Institute, the question of trust mani-
fests across three overlapping axes: trust between 
designers and users of new technology, between 
weather forecasters and AI, and between two 
epistemic communities (Knorr-Cetina, 1999): 
weather prediction and computational science. 
Examining these diverse dimensions of trust calls 
for synthesizing a few separate strands of debates 
in the social studies of algorithms. 

So, why mistrust AI? The most well-known 
problem with AI systems is their ‘black-boxed’ 
character (Christin, 2020; Pasquale, 2015). The 
actors depicted in the following pages and 
researchers in many other domains are attempting 
to rectify precisely the problem of black boxing 
by creating ‘explainable AI’ (Hoffman et al., 
2018). Explainability is but one of the examples 
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of emerging conceptions of ethics and trust in 
AI. In this context, it has become customary for 
organizations concerned with AI development to 
publicize their value statements. Many of these 
frameworks share a core set of principles, or what  
Greene et al. (2019) called the ‘moral background’ 
(Abend, 2014) of AI value statements, which they 
define as “the grounding assumptions and terms 
of debate that make conversations around ethics 
and AI/ML possible in the first place” (Greene et 
al., 2019: 2122). The question behind this paper 
is: how does the moral background of AI develop-
ment shape attempts at articulating situated, use-
inspired, and domain-specific value frameworks?

Morality and trust in this context are two 
independent variables that feed into the same 
problem: ethics of design. Many authors in critical 
algorithm and data studies (see Illiadis and Russo, 
2016; Moats and Seaver, 2019) have attempted to 
pin down what ethics both does and should imply 
(e.g., Richterich, 2018). Some authors have even 
unpacked the “ethics of ethics of AI” (Hagendorff, 
2020; Powers and Ganascia, 2020). Drawing on 
the discussion about the ethics of algorithms by 
Mittelstadt and colleagues (2016), I understand 
the ethics of AI to imply two semi-distinct sets 
of concerns: epistemic and normative concerns. 
While the authors observe that “[d]istinct 
epistemic and normative concerns are often 
treated as a cluster” (Mittelstadt et al., 2016: 14), 
I concur that this strategy is analytically disadvan-
tageous because the normative concerns often 
relate to the public perception and effects of tech-
nology, while the epistemic concerns are priori-
tized by the technology’s users and designers. The 
analytical distinction helps to describe the details 
of the effects of ethical frameworks. 

Mittelstadt et al.’s (2016) typology of standards 
of AI ethics lists 1) inconclusive evidence, 2) 
inscrutable evidence, 3) misguided evidence, as 
epistemic concerns. And 4) unfair outcomes, 5) 
transformative effects, as normative concerns, 
with traceability (the ability to determine 
wherein the process of design an “ethical bug” 
is embedded) as a technical concerns. In sum, 
Mittlestadt et al.’s typology gives precise language 
for inquiries into AI ethics. Nonetheless, I agree 
with the authors in stating that a “mature ‘ethics 
of algorithms’ does not yet exist, in part because 
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‘algorithm’ as a concept describes a prohibitively 
broad range of software and information systems” 
(Mittelstadt et al., 2016). As this case study shows, 
the development of ethical standards of AI needs 
to be grounded in and tailored towards the 
specific needs of professional communities. 

The relationship between trust and ethics begs 
for more explanation. While both in this paper 
and in the literature on AI ethics at large, trust and 
ethics often appear together without much reflec-
tion, the actors depicted in the following pages 
adhere to the view that trust is a key component 
of an ethical AI. Interestingly, in part, because AI 
is most often anthropomorphized, the statement 
that AI should be trusted or trustworthy can be 
misleading. For example, Mark Ryan argues that 
“Overall, proponents of AI ethics should abandon 
the ‘trustworthy AI’ paradigm (…) replacing it with 
the reliable AI approach, instead,” and adds that it 
should be the institutions using AI that should be 
trusted, and not the technology itself (Ryan, 2020: 
17). Rather than resolving this definitional tension, 
my goal is to depict how the actors at the Institute 
follow similar to proposed by Ryan strategy by 
constructing a trustworthy and ethical institution 
in a form of collaborative research methodology 
closely aligned with the notion of ‘AI ethics by 
design’ (d’Aquin et al,, 2018).

Furthermore, the question of trust in AI relates 
to the problem of automation-led unemploy-
ment—one of the key themes in the social studies 
of algorithms (Benanav, 2020; Besteman and 
Gusterson, 2019; Eubanks, 2018; Ford, 2015). Much 
of this discussion centers on the perception of AI 
as a new and relatively obscure technology that 
engenders mistrust based on fear among many 
professionals about being replaced. After all, one 
could “trust” a technology –in the sense that it will 
work reliably—and also fear it. In fact, the more 
reliable the technology, the more one might fear 
that it will replace people. Resolving this tension 
is a non-trivial task. For example, Peter McClure 
(2018) links this ‘technophobia’ to a general lack 
of comprehension of the new technologies in a 
sizable portion of the U.S. population. McClure 
concludes that technological apprehension is 
exacerbated by fears of “technological unemploy-
ment” (Keynes, 1930; Floridi, 2014). The institute’s 
focus on trust aims to, at the same time, mitigate 
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fears of forecasters about being unemployed and 
allow them means of engaging with the design 
process of AI to make technology trustworthy 
through explainability and adherence to the laws 
of atmospheric physics. 

Mutual orientations 
Paul Edwards (1996) introduced the concept of 
‘mutual orientation’ in chapter three of The Closed 
World. Edwards described how an early computer 
pioneer from MIT, Jay Forrester, convinced the U.S. 
military of the utility of digital computation to 
acquire funding for developing a general-purpose 
computer called “Whirlwind.” Forrester’s project 
had to compete with twelve other general-pur-
pose digital computers funded by the Department 
of Defense. Therefore, Forrester had to present it 
as more urgent and critical than other early com-
puters. Forrester and his group saw a potential 
application of their computer to the real-time 
military control system. Crucially, the focus on 
real-time control enabled by Whirlwind was the 
orientation Forrester chose to satisfy the granting 
agency’s needs and compete with the larger pool 
of digital computer developers. In the words of 
Paul Edwards, “Forrester’s (and MIT’s) increasingly 
grand attempts to imagine military applications 
for Whirlwind represented expert ‘grantsmanship,’ 
or deliberate tailoring of grant proposals to the 
aims of funding agencies” (Edwards, 1996: 81). But 
Forrester also informed the funding agency about 
“as yet undreamt-of possibilities for automated, 
centralized command and control” (Edwards, 
1996: 82). In effect, Forrester framed his research 
to suit the discourse of command and control, 
while the military embraced this imaginary as it 
was partially produced through Forrester’s delib-
erate actions. Forrester’s plan was met with strong 
resistance from the US generals, who saw the idea 
of being replaced by a computer as unacceptable. 
It was hence crucial for Forrester to promote trust 
in his automated technology. 

The following analysis shows both mutual 
orientation between the NSF and the Institute 
(based on making AI trustworthy) and AI and 
weather prediction experts (based on making 
AI explainable and in alignment with the profes-
sional intuition of the forecasters). This article 

captures the following stages in this process: 
First, a scientific field (in this case, the field of ML) 
responds to social demands for a new ethical 
standard for innovation. Second, a network of 
applied computational researchers seeks collabo-
ration with domain experts, leading to an alter-
native expertise network. Two kinds of mutual 
orientations then take place, and furthermore:
a. Mutual orientations between a scientific move-

ment and a funding agency, enabled by a 
shared ethics of technology development, lead 
to institutionalization of the movement,

b. The institutionalization leads to the emer-
gence and legitimation of new hybrid forms of 
expertise.

This theoretical framing intends to make the 
concept of mutual orientation relevant to the 
sociology of collaboration and interdisciplinarity 
(Jacobs and Frickel, 2009) and the social studies of 
algorithms.

Empirical context: the national 
strategy for AI development
In September 2020, the NSF announced the crea-
tion of six National Artificial Intelligence Research 
Institutes. Each Institute received $20 million in 
funding to be dispersed over the next five years. 
The Institutes were established through the 
efforts and support of federal agencies (National 
Science Foundation, U.S. Department of Agricul-
ture, National Institute of Food and Agriculture, 
U.S. Department of Homeland Security, Science 
& Technology Directorate, the U.S. Department 
of Transportation, Federal Highway Administra-
tion) and industry partners (Amazon, Google, IBM, 
Intel, Nvidia, Accenture). Together, the Institutes 
will form the backbone of the national AI strategy. 

Each of the Institutes has a designated theme. 
The rationale for an institute dedicated to trust 
has been justified differently by the AI experts and 
the NSF. While the NSF is invested in promoting 
a cross-agency framework for the ethical design 
of AI, the AI experts working with the weather 
forecasters see the Institute as an opportunity 
to resolve the jurisdictional struggle stemming 
in part from the black box problem of algo-
rithmic predictions—predictions which often go 
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against forecasters’ intuitions. Dr. Amy McGovern, 
a computer scientist from the University of 
Oklahoma, directs the Institute. McGovern leads a 
team of experts from the fields of ML, atmospheric 
and ocean science, meteorology, and computer 
science. The Institute’s secondary goal is to forge 
collaborations between academia, industry, and 
the private sector.1

First mutual orientation: 
Funding body and an alternative 
expertise network
The formation of the Institute 
The Institute’s origins can be traced to a pre-
existing expertise network of computer scientists, 
weather and environmental scientists, and risk 
communication scholars. The key focus of this 
scholarly network was research on so-called “use-
inspired” (or applied) ML. Institute director Amy 
McGovern explained that when the NSF released 
the call for proposals for National AI Institutes, she 
and her collaborators in meteorology had already 
begun to conceptualize a plan for a research 
institute focused on applying AI to atmospheric 
sciences. Some of the Institute’s members have 
a substantial history of being funded by the 
National Oceanic and Atmospheric Agency’s 
(NOAA) Joint Technology Transfer Initiative (JTTI). 
Thanks to this funding, even before the establish-
ment of the Institute, its members dominated 
the research field in improving the automation 
of weather prediction.2 In other words, there was 
already trust between the Institute’s members 
and the weather prediction community. 

Harry Collins et al. (2010) observe that initial 
trading zones, if successful, often culminate in a 
shared research proposal. This was the case with 
the alternative expertise network, arguably with 
Amy McGovern as one of its leaders. The center-
piece of the proposal was research on trust and 
AI. The following quote from McGovern illustrates 
that the AI and weather prediction experts under-
stood the need to establish a common definition 
of trust: 

We need to work with our targeted set of end-users 
to learn how they’re defining trustworthiness 
because it seems to be very different [from our 
definition].

With the release of the call for proposals, the team 
had to tailor the scope of their work and match 
definitions to the NSF’s vision. While the Institute’s 
focus on trust was prompted by the NSF’s desire 
to establish a center for fundamental research 
questions on epistemological dimensions of trust 
in ML, the Institute’s mission also became to allevi-
ate the fear of meteorologists of being replaced 
by AI. The creation of the Institute was an effect 
of mutual orientation of a bottom-up vision gen-
erated by an alternative expertise network (Eyal, 
2013) and the top-down framework for “Trustwor-
thy AI” embraced by a federal funding agency, the 
NSF. 

The crucial step in the mutual orientation 
between the NSF and the alternative expertise 
network warrants further explanation. While the 
NSF solicited proposals in the domain of trust-
worthy AI, the agency did not envision funding 
research in trustworthy AI, specifically in environ-
mental sciences. The “Trustworthy AI Institute” 
could as likely focus on biomedicine or any 
other socially relevant domain. In other words, 
the NSF chose to orient its vision of future work 
on trustworthy AI towards a specific expertise 
network of ML experts already collaborating 
with weather forecasters and risk communica-
tion scholars.3 As previous research shows, most 
often, “norms of AI are dynamic and are pieced 
together from various sources in traditional and 
transitional ways” (Gasser and Schmitt, 2020: 144). 
Likewise, the members of the Institute do not 
simply inherit the categories from the NSF Trust-
worthy AI framework; rather, they tailor the ethics 
at the Institute to suit their own experiences as 
well as the needs of the weather forecasting and 
the broader environmental science communi-
ties. As a result, the trustworthy AI framework 
became a boundary object, which enabled the 
initial expertise network to synthesize the defini-
tion of the funding agency, domain experts, and 
their views about what makes algorithmic models 
reliable. 

I ground the discussion of trust in the defini-
tion adapted at the Institute from Meyer et al., 
(1995), which claims that trust is “the willingness 
to assume risk by relying on or believing in the 
actions of another party.” I further discuss the defi-
nition of trustworthiness developed by the NSF.4 
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By making a distinction between a “relational” 
(involving relationships between actors) character 
of trust and “evaluative” (emphasizing the process 
of evaluation of claims, tools, or parties) character 
of trustworthiness, members of the Institute 
define “trustworthiness” as “a trustor’s evaluation, 
or perception, of whether, when, why, or to what 
degree someone or something should or should 
not be trusted.” These two definitions frame the 
internal work at the Institute. 

Altogether, the Institute’s work aims to bring 
together federal, industry, and professional 
standards of weather forecasting to engender a 
multidisciplinary workflow on developing trust-
worthy AI. The key component of overcoming 
both the fears of automation and mistrust in AI 
within a new expertise network are three related 
tasks: incorporating internal to the profession 
of weather forecasting standards of epistemic 
reliability, increasing model explainability, and 
aligning with social and environmental values of 
earth sciences. 

Disrupting the man-machine mix in 
weather prediction
The institute’s drive towards further automation 
in forecasting has the potential to impact the 
current dynamic in the long-standing history of 
the ‘man-machine mix’ (Henderson, 2017)  mix in 
meteorology. In August 2021, McGovern became 
Editor-in-Chief of the most recent journal intro-
duced by the American Meteorological Society 
called Artificial Intelligence for the Earth Systems. In 
a comment about the release of the journal, the 
president of the AMS, Michael Farrar explained:

Artificial Intelligence and machine learning 
offer exciting opportunities to improve our 
understanding of weather, water, and climate. AMS 
is excited to host a new journal to improve the 
science of AI and its applications for AMS-related 
sciences.

The enthusiasm of the AMS about AI could be 
explained by the explicit work of the Institute 
towards establishing trust in the new technology 
and the legitimation of the novel epistemological 
model. 

The introduction of a new technology into a 
professional domain engenders both fear and 

optimism. The enthusiasm of experts such as 
Michael Farrar about the inclusion of AI experts 
into their network of expertise—which mirrors 
the sentiment of many practitioners in the 
field—fits neatly within two key theoretical 
concepts originating in the sociological analysis 
of expertise introduced by Gil Eyal (2013), namely 
‘generosity’ and ‘co-production.’ Drawing on the 
actor-network theory, Eyal describes generosity 
as being “the opposite of monopoly, namely, 
that a network of expertise, as distinct from the 
experts, becomes more powerful and influen-
tial by virtue of its capacity to craft and package 
its concepts, its discourse, its modes of seeing, 
doing, and judging, so they can be grafted onto 
what others are doing, thus linking them to the 
network and eliciting their cooperation” (Eyal, 
2013: 875).5 Eyal understands co-production as 
a process through which “a network of expertise 
becomes more powerful and influential by virtue 
of involving multiple parties—including clients 
and patients—in shaping the aims and develop-
ment of expert knowledge” (Eyal, 2013: 876). The 
two concepts are meant to capture how “power 
consists not in restriction and exclusion, but an 
extension and linking” (Eyal, 2013: 876). In effect, 
the generosity and co-production help explain 
why the weather prediction community perceives 
AI as part of the strategy for establishing a more 
powerful expertise network and how AI experts 
seek to expand their methods into a new, socially 
relevant problem. In this context, the processes of 
mutual orientations could be seen as co-produc-
tion and generosity at work. 

“Trustworthy AI” framework and the 
National Science Foundation
The trustworthy AI framework, as defined by the 
NSF, bears the mark of its particular intellectual 
and organizational history. According to the NSF, 
a trustworthy AI should:

1. Be reliable; 
2. Be explainable;
3. Adhere to privacy standards; 
4. “Not exhibit biases that are socially harmful.” 

Using Mittelstadt et al.’s (2016) framework, we can 
distinguish that while the first two points could be 
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categorized as epistemic concerns, the latter two 
points refer to normative concerns. This frame-
work has its own history. Jeannette M. Wing6 
(2020) traces the history of conversations about 
trustworthy computing to the “Trust in Cyber-
space” 1999 report by the National Research Coun-
cil (1999). NSF joined this conversation in 2001 
by initiating the Trusted Computing program in 
2001 and later by expanding it through the Cyber 
Trust (2004), Trustworthy Computing (2007), and 
Secure and Trustworthy Systems (2011) programs 
(Wing, 2020). Wing observes that the industry 
soon followed the lead and began producing its 
own statements, beginning with Bill Gates’ 2002 
“Trustworthy Computing” memo (Gates, 2002). 
Some of the early reasons for articulating trust in 
digital technology had to do with the realization 
that cyberspace has become, towards the end of 
the 20th century, a critical national infrastructure 
prone to both attacks and disasters.7 Defining 
what trust in digital infrastructures implies has 
been an area of discussion and ambiguity since 
that time. For example, the National Research 
Council report reads:

The alert reader will have noted that the 
volume’s title, Trust in Cyberspace, admits two 
interpretations. This ambiguity was intentional. 
Parse “trust” as a noun (as in “confidence” or 
“reliance”), and the title succinctly describes 
the contents of the volume—technologies that 
help make networked information systems 
more trustworthy. Parse “trust” as a verb (as 
in “to believe”), and the title is an invitation 
to contemplate a future where networked 
information systems have become a safe place for 
conducting parts of our daily lives. Whether “trust” 
is being parsed as a noun or a verb, more research 
is key for trust in cyberspace. (National Research 
Council, 1999: viii).

The subsequent iterations of the definition of trust 
attempted to ameliorate this ambiguity but also 
respond to technological developments. There-
fore, it is reasonable to expect that the trustwor-
thy AI framework has played a vital role in shaping 
the mission of one of the NSF’s institutes since the 
Foundation has been deeply invested in defin-
ing and promoting the principles of trustworthy 
computing for over 20 years. Thus, we can see 

a refinement of a previous ethical statement in 
accordance with the existing “moral background” 
of AI development and an increase in the “com-
plexity” of computational systems. The establish-
ment of the Institute hence belongs to the long 
tradition of redefining trust in digital technology 
by nation-level actors.  

Orienting ethics at the Institute towards 
NSF’s trustworthy framework 
The necessity for ethical standards in predictive 
analytics for environmental science is not a uni-
formly recognized need. For example, during one 
of the meetings, McGovern mentioned a push-
back against implementing ethical training for 
environmental science from one of her colleagues 
from the National Academies of Arts and Sciences:

I am now on the National Academies Board of 
atmospheric science and climate, and we’re putting 
together a summer school on AI for Earth System 
prediction. We had a debate via email this week on 
whether or not ethics should be a part of that, and I 
held firm that yes, ethics needed to be part of that. 
One of the other people on the email chain was 
holding firm that there was no need for ethics in AI 
for Earth Science prediction because there was no 
reason that AI needed to be ethical because there 
was no bias that would show up. It wasn’t that they 
were advocating that ethics was bad, just that they 
didn’t think that there was any bias in anything that 
we were doing to predict in Earth Science.

While the ML experts do perceive a need to 
explore the epistemic grounds of ML predictions, 
they do not see the normative values as relevant 
to the application of ML in environmental sci-
ences. Despite this ambivalence, the Institute 
members agree that the ethics of AI could and 
should be applied to the design of AI for earth 
sciences. There are four foundational domains 
and activities which facilitate a common ethical 
ground for the Institute. These are 1) reliance on 
the NSF’s trustworthy AI framework, 2) establish-
ment of an Institute-specific code of ethics, 3) 
formal educational activities—and specifically 
the core course called “AI, Ethics, and Geoethics” 
designed and taught by Amy McGovern, 4) discus-
sions of ethical principles during regular, Institute-
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wide meetings. I will briefly describe each of these 
activities.

As mentioned above, the NSF Trustworthy AI 
framework is derived from the principles of trust-
worthy computing. Drawing on Mittelstadt and 
colleagues’ typology, we see that the framework 
combines epistemic (reliability, explainability) 
and normative (privacy, social harm) concerns. 
However, this framework alone is not specific 
enough to serve the situated needs of AI in envi-
ronmental sciences. Therefore, the Institute’s 
code of ethics was derived from the codes of 
ethics of the American Meteorological Society, 
the American Geophysical Union, the American 
Association of Artificial Intelligence, and Google’s 
AI Principles. The confluence of distinct discipli-
nary and organizational paradigms gave rise to a 
unique set of ethical considerations. While some 
of the standards in the Institute’s code outline 
general principles of scholarly conduct, worth 
mentioning are points 3, 4,5, and 6 of the code 
(McGovern et al., 2020):

3. Stewardship of the Earth: 
1. Members have an ethical obligation to 

weigh the societal benefits of their research 
against the costs and risks to human and ani-
mal welfare, heritage sites, or other potential 
impacts on the environment and society.

2. Members also have an ethical obligation to 
limit their contributions to climate change.  

4.  Public Communication: 
1. Members have an ethical obligation to foster 

public awareness and understanding of AI, 
computing, related technologies, and their 
consequences.

5.  When creating AI systems, members will:
1. Ensure that the public good is the central 

concern during all professional computing 
work.

2. Give comprehensive and thorough evalu-
ations of AI2ES AI algorithms and their 
impacts, including analysis of possible risks.

3. Recognize and take special care of AI sys-
tems that become integrated into the infra-
structure of society.

6.  Members will create AI systems that will:
1. Avoid harm.
2. Protect the Earth and its environment 

including human and animal welfare.
3. Contribute to society and to human well-

being, acknowledging that all people are 
stakeholders in computing.

4. Be fair and take action not to discriminate.
5. Respect privacy.
6. Honor confidentiality.
7. Avoid creating or reinforcing bias.
8. Uphold high standards of scientif ic 

excellence.

The above principles have guided director McGov-
ern during the design of her course on “Ethics of 
AI and Geoethics.” The course serves both the 
student body at the University of Oklahoma, the 
Institute, and is publicly available on the Insti-
tute’s website. The course reviews topics relevant 
to AI design, such as bias, transparency, liability, 
and security, and issues of social responsibility 
and interdisciplinary dynamics. The emphasis on 
interdisciplinary communication and collabora-
tion draws on the work of and William Newell and 
Douglas Luckie (2019) on Pedagogy for Interdiscipli-
nary Habits of Mind as well as other seminal works 
from the field of interdisciplinary studies and the 
research from the field of team science. McGov-
ern’s course poster for the Spring of 2021 promi-
nently features the cover of Ruha Benjamin’s book 
Race After Technology (2019), which, as she told me, 
significantly impacted her. 

The language of trust becomes a pidgin 
(Galison, 1997) through which the Institute 
operates. Risk communication comes into the 
picture as the discipline most associated with 
regulating trust, and hence, they acquire a privi-
leged position in deliberately setting out to 
comprehend the various definitions of trust-
worthy AI. Yet, as the forthcoming discussion will 
show, each group understands trust in a slightly 
different way. As Collins et al. (2010: 14) suggest, In 
some cases, interactional expertise trading zones 
rely on trade managed not by experts from each 
group who develop an interactional expertise, but 
rather by third parties who can talk to all groups 
involved. At the Institute, that risk communication 
scholars are the “third party” people managing a 
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trade without the necessity for developing of an 
interactional expertise by other researchers at the 
Institute. This position is partly enabled by the risk 
communication scholars’ expertise in qualitative 
methods: as social scientists, they are assumed to 
know how to translate across epistemic cultures. 
This translation process is tied to the perception 
that the language of qualitative social science 
offers a bird’s eye view of the Institute. 

One of the goals of the risk communication 
group (designated as Focus 3: Foundational 
research in AI risk communication for environ-
mental science hazards) is to “Develop princi-
pled methods of using [the group’s] knowledge 
and modeling to inform the development of 
trustworthy AI approaches and content, and the 
provision of AI-based information to user groups 
for improved environmental decision making.” This 
goal is tied to achieving a certain level of pidgin-
based communication between various research 
groups at the Institute. This is done through 
Institute-coordinated training and communica-
tions. Lead risk communication PI Ebert-Uphoff 
suggested that,

One way to break down institution and discipline/
topics barriers is to have a regular talk series. These 
talks need to be short and simple at the beginning, 
so the barrier is relatively low for Institute members 
to follow, regardless of their research background. 
Collaboration ideas and actions will most likely 
develop out of these “101” talks naturally.

What Ebert-Uphoff prescribes for the Institute 
aligns with Galison’s (2010) observation that trade 
often relies on ‘thin interpretation.’ According to 
Peter Galison, “[t]rade  focuses on coordinated, 
local actions, enabled by the  thinness  of inter-
pretation rather than the thickness of consensus” 
(Galison, 2010: 36). The Institute-wide meetings 
often rely on such ‘thinness.’

Lastly, the ethics of AI is one of the central 
topics for the bi-weekly Institute-wide meetings. 
Worth recounting here was a presentation given 
by Ebert-Uphoff titled “Responsible Use of AI—
What role can [the Institute] play?” One of her 
slides states, “If the [Institute] does not address 
Responsible Use of AI for the weather/climate 
community, who will?” Ebert-Uphoff thus sees the 
Institute as a “role model” for other communities 

implementing AI in environmental sciences. The 
responsible use of AI, according to the author, 
should include two long-term goals: “Develop 
new techniques, customized for meteorology,” 
and “Collect and translate existing solutions from 
[computer science] and other literature.” During 
her presentation, Ebert-Uphoff drew attention to 
the concept of ‘environmental injustice,’ a process 
which she described this way: 

Due to limitations of sensors or other data 
sources, certain regions or certain meteorological 
conditions are under-represented in data. ML 
model learns from data; those scenarios are then 
under-represented in the ML model as well, which 
can quickly result in environmental injustice. … 
Air pollution and other sensors are more prevalent 
in affluent areas/countries. [and] Southern 
hemisphere often under-represented.

In response to this point, one of the attendees 
recounted an anecdote of someone who trained 
ML model to understand cyclones on data from 
the North without considering that on the South-
ern hemisphere, due to the Coriolis effect cyclones 
spin in the opposite direction. Furthermore, to 
show that “Using [neural networks] as a black box 
is not a good idea,”  in the same talk, Ebert-Uphoff 
used the story of Clever Hans, a horse who dur-
ing the early 20th century was believed to have 
learned arithmetic. Clever Hans, as it turned out, 
was merely reading the cues of his trainer.8 

The history of mistrust in 
automation in weather prediction
The emphasis on trust at the Institute intersects 
with long-standing tensions between compu-
ter modeling and the tacit expertise of weather 
forecasters—a tension between external and 
internal forces that came to define meteorology. 
As the history of weather prediction tells us, fears 
of automation are hardly new in this profession. 
This history also demonstrates that automation is 
not just an inevitable evolution but that it is led 
by experts from other domains—i.e., computer 
scientists, data scientists, AI experts. 

A term that succinctly captures this profes-
sional tension is ‘meteorological cancer’. Jennifer 
Henderson (2017) introduces this term in her 
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ethnography of ethical dimensions of weather 
prediction. Henderson heard about this term 
from her interlocutors, who worried that younger 
forecasters, instead of “developing their own 
conceptual model” (Henderson, 2017: 1), use 
almost exclusively computer models to generate 
their forecasts. As meteorologists with whom 
Henderson (2017: 1) worked affirm, “[f ]orecasters 
are substituting the computer model for their own 
knowledge.” Henderson shows that the metaphor 
of ‘meteorological cancer’ captures the forecasters’ 
realization that by downplaying the importance 
of their tacit expertise, they “are contributing to 
their own demise” (Henderson, 2017: 1). As with 
other professions, forecasters have for a long time 
been aware of their own, often elusive, position 
within the ‘man-machine mix’ (Henderson, 2017). 
Part of Henderson’s (2017: 3) ethnographic goal 
was to understand the “competition of forecasters 
rivaling computer models for daily work even as 
the machines increasingly outperform them”. This 
ethnographic account thus shows in detail how 
the fear of being automated out of a job manifests. 
Yet, the ‘ontological fears’ of weather forecasters, 
as Henderson calls them, are “not so much the 
loss of labor but the change in the image of them-
selves” (Henderson, 2017: 46). 

The advent of modern weather forecasting 
is marked by the development of Numerical 
Weather Prediction (NWP) in the 1930s and 40s 
and the employment of computers to model 
atmospheric data. In Kristine Harper’s words, the 
meteorologists sought to invest their energy and 
resources in developing NWP “to increase the 
fortunes of a research community that had long 
been on the margins of U.S. science” and, conse-
quently, “to replace the art of forecasting with the 
science of meteorology” (Harper, 2012: 668). The 
meteorologists’ goal, Harper (2012) argues, was to 
elevate meteorology to the status of a ‘legitimate’ 
and objective scientific discipline by increasing 
the quantitative element of the field. 

Harper (2012) observes that there are two 
parallel views within the historiography of mete-
orology about who was more instrumental in 
shaping the field. One part of this literature 
emphasizes external actors, such as the polymath 
John von Neuman, who was deeply involved in 
designing the first computing system for weather 

forecasting. At the same time, other scholars 
attribute more substantial agentive capacity 
to meteorologists in defining their future. This 
argument aside, the point is that the birth of 
modern weather prediction is tied to the shift in 
the network of expertise in meteorology: NWP, in 
Harper’s account, has been made possible by the 
“availability of a new and larger pool of scientifi-
cally educated and mathematically savvy meteor-
ologists” (Harper, 2012: 670-71). Considering this 
history, I suggest that the mistrust of AI may result 
from not only a fear of ‘technological unemploy-
ment’ but also of destabilization of a professional 
identity. Furthermore, there is nothing new about 
the mistrust of automation, but the method of 
addressing it—by creating an intermediary profes-
sional organization—is a novel development.

As such, meteorology is one among a growing 
number of professions that face existential angst 
due to advancements in AI. Sociologist Phaedra 
Daipha (2015: 106) understands weather fore-
casting “as the art of collage” By this, Daipha means 
that weather forecasting is characterized by the 
“art of improvisation,” or an ability to mobilize 
various streams of data and modeling and be 
competent in screenwork analysis, as well as 
actual observation of physical weather. Following 
Daipha and other ethnographers of weather 
professionals, I frame the introduction of AI into 
the field as part of the larger ‘collage,’ or “a heuristic 
that frames meteorological decision-making as 
a process of assembling, appropriating, super-
imposing, juxtaposing, and blurring of informa-
tion” (Daipha, 2015: 21). Daipha further describes 
weather forecasting as ‘art and science,’ and fore-
grounds the blurring of the boundaries between 
human and the machine in the profession. In 
another register, what takes place at the Institute 
is a jurisdictional struggle between groups of 
experts who embrace ‘mechanical objectivity’ on 
the one hand and ‘trained judgment’ (Daston and 
Galison, 2010) on the other. 
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Second mutual orientation: 
Weather forecasters and 
machine learning experts
The introduction of AI in weather forecasting is a 
story of ethical and epistemological progression 
towards ever-increasing speed and accuracy of 
predictions. But what will make AI-based predic-
tions more trustworthy? And “Who possesses the 
better understanding of the atmosphere: those 
who crunch the numbers, but never look outside, 
or those who are unimpressed by equations, but 
read the sky?” (Henderson, 2017: 689). Forecast-
ers have asked this question for almost 70 years. 
In the story of Jay Forrester and the Whirlwind, 
Paul Edwards (1996) notes that it was Forrester 
who deliberately influenced high-ranking officials 
in the Office of the Naval Research, who initially 
were skeptical of the utility of the digital compu-
ter. Some generals were hostile to the idea that 
a machine could perform the tacit knowledge of 
strategizing. Analogously, the weather forecast-
ing community has been characterized by fric-
tion between those who ‘read the sky’ and those 
who ‘crunch the numbers,’ to use Harper’s (2012) 
words. 

To gain the community’s trust and secure a 
mutual orientation between ML and weather fore-
casting experts, the members of the Institute had 
to learn to do both. The ML experts at the Institute 
have understood the need to design ML that 
weather forecasters could trust. This form of ML 
is based on two central properties: explainability 
and adherence to the laws of physics. In sum, ML 
experts realized that to get the forecasters to trust 
their system, they needed AI to satisfy a number 
of criteria: 1) be explainable, 2) adhere to the 
laws of physics and look ‘realistic,’9 4) adhere to 
the tacit norm of “erring on the side of caution.” 
The following subsection examines these related 
criteria in AI design. 

Trustworthy AI needs to be both 
explainable and realistic
McGovern has a long history of spanning the 
boundaries of computer science and weather 
forecasting. As a result, she has a unique vantage 
point to understand the role of explainability 
as a crucial factor in promoting ML for weather 

forecasting. McGovern’s doctoral work was in 
computer science and on a type of AI called rein-
forcement learning (RL). At the University of Okla-
homa, she holds a full professorship in both the 
School of Computer Science and the School of 
Meteorology. With expertise in ML and weather 
forecasting, she is a boundary-spanning figure 
(Aldrich and Herker, 1977; Ribes et al., 2019) who 
strives to present ML methods in ways the mete-
orology community can understand and trust. In a 
paper titled “Making the Black Box More Transpar-
ent: Understanding the Physical Implications of 
ML” (McGovern et al., 2019) published in the Bulle-
tin of the American Meteorological Society, McGov-
ern and colleagues argued: 

Despite its wide adoption in meteorology, ML 
is often criticized by forecasters and other end 
users as being a “black box” because of the 
perceived inability to understand how ML makes 
its predictions. This phenomenon is not exclusive 
to meteorology, and many ML practitioners 
and users have recently begun to focus on this 
interpretability problem (McGovern et al., 2019: 
2176). 

This problem statement made by a computer 
scientist in a prime venue for meteorological 
research attests to the gravity of the problem of 
trust in automation in weather forecasting. 

But professional meteorologists are not 
the only group the Institute’s members seek 
trust from.  In one of the talks about the 
Institute presented at the “2nd Workshop on Lever-
aging AI in Environmental Sciences”  organized 
by NOAA, McGovern said: “You can’t develop one 
particular AI technique that’s going to meet all of 
these needs. What you need to do is to take into 
account the end user’s needs and to make it trust-
worthy for that end user—you need to care about 
the end-user that you’re looking at.” This approach 
to trustworthiness requires deliberate tailoring of 
both algorithmic tools and discourses that explain 
these tools to different publics and actors.

According to the Institute members, the key to 
solving the problem of trust in AI among both the 
forecasters and the public is explainability. In one 
of the lectures she delivered about the Institute, 
McGovern described the mission of the Institute 
in the following manner:  
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we’re working on developing explainable AI 
methods that are aligned with environmental 
science, domain perspectives and priorities. This 
means that we care about what environmental 
scientists care about. We care about the spatial 
and temporal nature of the data. We care about 
the physics-based nature of the data, etcetera. 
So, it isn’t just an explainable AI method that’s 
developed theoretically—we’re testing it on all the 
environmental science domains.

During one of the Institute meetings, McGovern 
stated succinctly:

what is the future of everything we are trying to 
do? I think we need to integrate the AI and the 
physics and the robust approaches that we’ve 
started with explainable AI.

McGovern and her team are devoted to a solution-
oriented approach grounded in problems emerg-
ing from environmental sciences. For the Institute 
members, specificity matters—the spatial, tem-
poral, and physical aspects of environmental data, 
as well as the needs of potential users, need to 
be considered. As one researcher at the Institute 
said, “If we’re going to be showing the results of 
these [predictive models] to [forecasters] to say: 
‘this is trustworthy,’ you can’t give them stuff that 
doesn’t look realistic at all.”

Not all AI models have laws of physics built into 
them. And for weather forecasters, physics-based 
AI is one of the conditions for the technology’s reli-
ability and realism. “Physics-based AI” is a family of 
AI models that respects actual physical processes, 
such as the dynamics of storm formation. Making 
ML models physics-based is part of the process 
of establishing trust in the model, specifically 
in the domain of weather forecasting. In effect, 
the ML experts themselves have to develop an 
understanding of the physics of weather. This 
is one of the most challenging things to train as 
an ML expert. Forecasters need translators who 
can explain how algorithms arrive at their results. 
While prior to the establishment of the Institute, 
this translation had to be managed solely between 
AI and weather experts, the Institute adds an extra 
layer of risk communication scholars who, through 
their social science sensitivity, can help mediate 
across epistemic cultures (Knorr-Cetina, 1999). 

In this context of interdisciplinary translation 
work, I want to draw attention to the complexity 
of ‘opening the black box’ of algorithms as a 
solution to the problem of trust. As Anthony 
Giddens argued, 

There would be no need to trust anyone whose 
activities were continually visible and whose 
thought processes were transparent or to trust any 
system whose workings were wholly known and 
understood. (Giddens, 1990: 33)

Following Giddens, we can conclude that full 
explainability would ostensibly make the articu-
lation of standards of trust obsolete. But full 
explainability is rarely attainable. Trust requires 
more than just explainability. 

Analyses of explainability and transparency 
have been a key trope among critical algorithmic 
and data studies scholars, some of whom have 
observed limitations of the notion of transparency. 
For example, Mike Ananny  and Kate Crawford  
(2018: 5) observe that transparency “assumes that 
knowing is possible by seeing, and that seemingly 
objective computational technologies like algo-
rithms enact and can be held accountable to a 
correspondence theory of truth”. But as  Ananny 
and Crawford make apparent, transparency does 
not necessarily build trust.  On the other hand, 
Cynthia Rudin and  Joanna Radin (2019) ques-
tioned whether we need to make ‘black-boxed’ 
AI in the first place. They argued that “an accurate 
machine or an understandable human” (Rudin 
and Radin, 2019: 4) is a false dichotomy. The 
explainability of AI systems is undeniably a virtue 
that researchers strive for, but as Rudin and Radin 
point out, the dichotomy between “Being asked to 
choose an accurate machine or an understandable 
human is a false dichotomy” (Rudin and Radin, 
2019: 4). While arguably the philosophy of tech-
nology at the Institute reproduces this dichotomy, 
the question remains how the Institute will help 
to resolve this tension, and how explainability will 
influence the uptake of AI in weather prediction. 
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When machine learning goes out to 
lunch and predicts the end of the world: 
Calibration and mutual orientations at the 
NOAA’s Storm Prediction Center
The fundamental conundrum in the forecaster’s 
work is to determine whether to trust automated 
prediction generated by a computer or their own 
intuitions. The mode of prediction in ML clashes 
with institutional norms and forecasters’ intui-
tions. As Henderson (2017) notes, a part of fore-
casters’ trust is based on reducing their exposure 
to criticism by ‘under forecasting’—meaning here 
simply to communicate to the public lower prob-
abilities than those generated by their mental and 
digital models. Yet, ML models do not hold to this 
facet of an ‘ethic of accuracy’ of weather predic-
tion (Henderson, 2017; see also MacKenzie, 1987). 
Paramount in this context is the importance of 
“calibration” between forecasters’ predictions and 
the predictions of ML models, which, while not as 
accurate in the eyes of ML experts as it could be, 
respects the implicit norms of weather forecasters. 
By calibration, here I mean a process of translat-
ing ML models into more realistic forms of predic-
tion. The next few paragraphs offer an example of 
a tension between ML researchers who try to be 
as accurate as possible and forecasters who lean 
towards performing cautious predictions.

During one of the Institute meetings, director 
McGovern recollected an event during which a 
model deemed efficient by the ML experts was 
considered to be untrustworthy by the NOAA’s 
Storm Prediction Center (SPC) forecasters. The 
point of contention was a divergence between 
the ML models’ and the forecasters’ predictions. 
One Institute member explained: “on this partic-
ular day, the ML model gave 80% [probability] of 
a certain temperature, while the SPC issued the 
probability of 50%.” Critically, due to the tacitly 
accepted principle of “erring on the side of caution” 
(Henderson, 2017: xxxvi), the highest probability 
forecasters wanted to issue was 60%.10 McGovern 
elaborated: “From our perspective, a 100% proba-
bility wasn’t a problem (…) if the model says a 100, 
why shouldn’t we say a 100? But the SPC said ‘hell 
no.’” Another ML expert remarked: “You can see 
that by design, SPC wants to under-forecast.” The 
same expert put this divergence in the context of 
their long-term work with the SPC: 

You’re trying to defend the model the first year. 
And [the SPC people] would just flip past because 
it’s like: ‘Oh yeah, the ML is out to lunch again, 
it’s putting 80%.’ (…) So, when they’re looking at 
30% as a high-end event, and a model is putting 
out 85%, they’re looking at it and saying, ‘Oh, 
this model is basically predicting the apocalypse 
for every day, and we can’t trust it if it’s always 
predicting the end of the world.’ 

The forecasters could not trust the ML mod-
els because they suggested probabilities much 
higher than they were used to. But, as this par-
ticular ML researcher explained, “By default, the 
model doesn’t have any sort of idea of what SPC 
predicts. It just gives you a raw weighting based 
on (…) the data.” To remedy this divergence, 
designing physics-based AI and calibration of 
models has emerged as a critical issue. The con-
cept of calibration in this scenario becomes one of 
the modes of a mutual orientation between two 
groups of experts. To make AI probabilities align 
more with forecasters’ norms, AI researchers cali-
brated the model which previously “has gone to 
lunch” with multiple real-life datasets. Only after 
the appropriate calibration took place were the 
forecasters’ and models’ predictions aligned.

This scenario exemplifies a classical problem 
of expert system approach to AI and the long-
standing tension between predictive experts and 
computers. One of the solutions to the calibra-
tion problem in the eyes of the Institute members 
is to extract ‘mental models’ of forecasting and 
input them into ML predictions. Imme Ebert-
Uphoff mentioned that it would be beneficial to 
use social science methods to understand how 
forecasters read the data and build AI based on 
those ‘mental models.’ She emphasized “getting 
feedback from social scientists about how we 
should develop ML methods” and explained that 
she does “a little bit of interviewing” when she sits 
down with an end-user and asks: “how do you do 
[predictive work] right now?” In her experience, 
forecasters often clash with the computer science 
people who say, “let the computer do it all.” In one 
of the talks, she concludes: 

We could do the whole community a big favor 
by revisiting the entire topic—not just what 
explanations should be like, but can we make 
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ML a little bit more like what people do manually 
right now? (…) Can we build a mechanism and 
vocabulary where we can actually talk about it?

A fascinating aspect of this situated process of cal-
ibration is that despite a historical decline in the 
prominence of the expert system approach to AI 
development, the ethics of explainability pushes 
some AI developers to once again revisit this less 
prominent form of AI11 In recent years, it was the 
data-driven system that won the battle, but the 
Institute is evincing the prowess of the expert sys-
tems approach.

Discussion
This case study testifies to the necessity of sup-
plementing contemporary critique of AI with 
historical analysis. Initiatives like the Cambridge 
University seminar series on “Histories of Artificial 
Intelligence: A Genealogy of Power” are among 
many scholarly developments promoting an inte-
grative, historical, and sociological examination of 
AI. From such a vantage point, the introduction of 
AI into weather forecasting can be better under-
stood within the context of a longue durée of the 
interplay between trained judgment and mechan-
ical objectivity in weather prediction (Daston and 
Galison, 2010). For example, Henderson argues 
that the crux of the matter is that:

Amid the talk of competition between humans 
and their technologies, then emerges a tension 
between the success of their work as predictive 
experts, which computer models help facilitate, 
and the value of their own expert skill in the 
process. At stake are the identities of forecasters 
as scientists and the survival of their profession in 
ways they envision it ought to exist (Henderson, 
2017: 10)

She adds: “In a forecasting office, boundaries 
between human and computer are fluid, blurred, 
and multiple. There is no single human nor a soli-
tary machine but a plurality of both” (Henderson, 
2017: 10). As with other professions, AI might 
merely reposition the boundaries between the 
human and the computer. Nonetheless, such 
repositioning can turn into a professional ‘iden-
tity crisis’ (Henderson, 2017: 11). The possible dis-
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ruption in the professional identity of forecasters 
caused by AI lies at the core of the jurisdictional 
struggle explored in this paper. Interpreting such 
emerging jurisdictional struggles with attention 
to the history of automation might prove to be 
analytically advantageous for STS scholars, as well 
as for technology designers and policymakers.

The establishment of the Institute suggests 
that the introduction of AI into domains such as 
weather forecasting and environmental sciences 
at large necessitates deliberate training in novel, 
hybrid forms of expertise. The need for calibra-
tion between the professional norm of “under 
forecasting” and AI’s predictions also illustrates 
the tacit dimensions of professional expertise. 
This state of affairs is present in other professional 
contexts as well. For example, an ethnographic 
study of predictive policing revealed the impor-
tance of forming new intermediary occupational 
roles as a key to securing trust in AI (Waardenburg 
et al., 2018). Such professional intermediaries 
helped to establish “the superiority of algo-
rithmic decisions over human expertise,” but their 
presence also “further black-box[ed] the inherent 
inclusion of human expertise” in making decisions 
based on AI reccomendations (Waardenburg 
et al., 2018: 14). The capacity to interpret ‘black-
boxes’ comes with a specific form of intellectual 
capital. Those possessing such expertise might 
likely succeed in gaining prominence within the 
larger domain. Therefore, the introduction of 
professional intermediaries might have profound 
effects on the future of environmental prediction. 

Relatedly, as a growing literature focused on 
environmental data practices alerts us to the 
unique characteristics of environmental data (e.g., 
Fortun et al., 2016; Gabrys, 2016, 2020; Lippert, 
2015), critical algorithm and data scholars will 
need to pay more attention to the formulation 
of AI and data ethics in environmental sciences. 
Recounted above debate among the Institute 
members about whether AI in Earth Sciences 
might exhibit biases is a case in point. To repeat, 
as McGovern put it, one of her collegues argued 
that ”there was no need for ethics in AI for Earth 
Science prediction because there was no reason 
that AI needed to be ethical because there was 
no bias that would show up.” Arguably, environ-
mental STS analysis can offer a more nuanced 
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and situated view of algorithmic bias and ethics 
at large. Interdisciplinary communication across 
social, environmental, and computer sciences is 
becoming more ubiquitous in AI design, and the 
Institute might offer many best practices for such 
collaborations. On the STS side, many scholars 
have adopted an openly collaborative ethos, as 
for example in Gina Neff and collegues’ “prac-
tice-based framework for imporving critical data 
studies and data science” (Neff et al., 2017: 85), 
and such frameworks might also prove generative 
for studies of both data and algorithms and for 
fostering interdisciplinary dialogue.

The study of the orientations of scientific 
research toward socially relevant problems has 
produced many insights into the formation of 
new scientific movements and disciplines (Frickel, 
2004; Jacobs, 2014; Hess et al., 2008). Neverthe-
less, there is a pressing need for further research 
about the role the ethics of technology design 
plays in the formation of networks of expertise 
consisting of private, public, and academic actors. 
Ethics statements common to industry often 
have objectives distinct from those embraced by 
public agencies or universities, and how the many 
genres of ethical frameworks are consolidated 
will require further study. Multi-sector collabora-
tions engender the composition of unique and 
discipline-tailored ethical standards, thus putting 
into question the utility of “one size fits all” design 
standards. 

Multi-sector organizations might prove to 
be very effective spaces for translating hig level 
policy discourses and moral backgrounds of tech-
nology development for the purpose of discipline-
specific use of AI. Paul Edwards (1996) argued that 
the funding of Forrester’s Whirlwind project—a 
project that paved the way for semi-automatic 
command and control systems in the army to the 
dismay of many high-ranking officials—could 
not be possible outside of the political milieu of 
the late 1940s and early 1950s. Analogously, the 
contemporary cultural conversation and policy 
discourses about the ethics of AI were a causal 
factor in instigating a mutual orientation between 
the NSF, the Institute, and weather forecasters. But 
the middle ground between policy discourses and 

technology development is often occopuied by 
boundary organizations (Guston, 1999; Vaughan, 
1999). More research is necessary to capture how 
situated and idiosyncratic standards of AI design 
become stabilized and embraced by muti-sector 
projects and organizations, especially as more 
private-public partnerships (such as US NSF AI 
Institutes) are created under the often-seemingly 
over-arching umbrella of national AI strategies.

Conclusions
The evincing of ethical and socially desirable 
image plays a significant role during the emer-
gence and institutionalization of alternative 
expertise networks. This is often done, as in the 
case of the Institute, through an alignment with 
pre-existing ethical standards or moral back-
grounds (Abend, 2014) of technology design, but 
it also involves extensive, domain-specific adjust-
ment of standards. This study intervenes in the 
literature on the ethics of AI by showing that the 
prevailing moral background and national ethi-
cal standards of technology development, while 
crucial, are by themselves insufficient in providing 
tailored solutions to domain-specific issues asso-
ciated with trust in new technologies. The use of 
the concept of ‘mutual orientations’ and the read-
ing of the literature on the sociology of expertise 
and SCOT approach offers an analytical purchase 
on the question of how alignments of design 
standards shape emerging expertise networks 
and the introduction of AI into an existing pre-
dictive science. Moreover, the concept of ‘mutual 
orientations’ highlights the dynamic nature of the 
institutionalization of hybrid expertise networks. 
Indeed, introducing new technology into a profes-
sional field is often led by a desire to form a more 
robust network through generosity and co-pro-
duction (Eyal, 2013). The above analysis highlights 
the importance of not only the role of transpar-
ency in forging trust between experts but also of 
a design process sensitive to the norms and stand-
ards of an expert community. For the experts at 
the Institute, this meant creating algorithms that 
adhered to the laws of physics and intuitions and 
norms of weather forecasters.
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Notes
1 On the commercialization of meteorology and weather data, see Randalls, 2010, 2017; and Oui, 2022; 

and on the effects of the business-oriented model on the history of NOAA, see Fleagle, 1986.

2 For an analogous analysis of a relationship between politics and science, see Guston’s (1999) work on 
the Office of Technology Transfer as a ‘boundary organization.’

3 Boundary organizations, like the Institute, often bring unexpected collaborators together (O’Mahony 
and Bechky, 2008).

4 Trust has been defined differently in other institutional (i.e., Mozilla Foundation) and political (European 
Union) contexts (see Greene et al., 2019).

5 Eyal borrows the concept of co-production not directly from the seminal work of Sheila Jasanoff but 
from Vololona Rabeharisoa and Michel Callon’s (2002) reading of Jasanoff.

6 Wing, who is now the director of the Data Science Institute at Columbia University, has been deeply 
involved in shaping the NSF’s perspective on trust as an Assistant Director of the Computer and Infor-
mation Science and Engineering Directorate between 2007 and 2010.

7 For the historical context about trust and computing infrastructure, see Slayton and Clarke, 2020.

8 See Kate Crawford (2021: 4) on the myth of Clever Hans.

9 ‘Realistic,’ a term forecasters use, means in this context that ML models need to respect the laws of 
physics. Making ML models physics-based is, hence, part of the process of establishing trust in the 
model.

10 Brysse et al. (2013) observed a similar bias towards ‘erring on the side of least drama’ among climate 
scientists who, contrary to some accusations of alarmism, often underpredict future climate change.

11 For the history of the relationship between expert systems and data-driven approaches in ML, see Dick, 
2019 and Mendon-Plasek, 2021.
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