
66

Science & Technology Studies 37(2)Article

Thinking Like a Machine: Alan Turing, Computation
and the Praxeological Foundations of AI

Dipanjan Saha
University of Liverpool, United Kingdom/ dipanjan.saha@liverpool.ac.uk

Phillip Brooker
University of Liverpool, United Kingdom

Michael Mair
University of Liverpool, United Kingdom

Stuart Reeves
University of Nottingham, United Kingdom

Abstract
As part of ongoing research bridging ethnomethodology and computer science, in this article we offer
an alternate reading of Alan Turing’s 1936 paper, “On Computable Numbers”. Following through Turing’s
machinic respecification of computation, we hope to contribute to a deflationary position on AI by
showing that the activities attributed to AIs are achieved in the course of methodic hands-on work with
computational systems and not in isolation by them. Turing’s major innovation was a demonstration
that mathematical and logical operations could be broken down into elementary, mechanically
executable operations, devoid of intellectual content. Drawing out lessons from a re-enactment of
Turing’s methods as a means of reflecting on contemporary artificial intelligence (AI), including the
way those methods disappear into the technology, we will suggest the interesting question raised in
“On Computable Numbers” is less about the possibilities of designing machines that “can think” (cf.
Turing, 1950), but the practical work we do, and which is made possible, when we ourselves set out to
think like machines.

Keywords: Turing Machine, Computation, Artificial Intelligence, Ethnomethodology, Re-enactment

This work is licensed under

a Creative Commons Attribution 4.0

 International License

Introduction
The foundations of Turing’s ‘thinking machines’
(Turing, 1950)—and by extension the aspira-
tional research programme(s) of ‘artificial intel-
ligence’ (AI) and core assumptions about the
computational character of ‘intelligence’ that AI

mobilises—are built upon Turing’s earlier work
on computability and Turing Machines (Turing,
1936). In this paper we want to examine the over-
looked praxeology of Turing Machines (TMs) as an
imagined—and widely claimed—precursor for AI.

67

By attempting to create a simple TM as part of a
course of “technical self-instruction” (Sormani,
2016), we reveal how instructions come to consti-
tute machines that do things ‘on their own’—and
in doing so advance an ethnomethodologically-
informed corrective to what we think are linger-
ing reifications of ‘machine autonomy’ in AI. Our
core argument is that the circumstances in which
machines are brought off as ‘autonomous’, as
demonstrating ‘artificial intelligence’, can be
traced back to the same kinds of underexamined
practical work revealed when we attempt to piece
together TMs for ourselves: familiar activities to
any Computer Science undergraduate, but largely
unremarked in any explicit fashion by Turing him-
self and others since.

 Partnered with what we could call Turing’s
‘disappearing act’—the dematerialisation
of the practical construction of TMs into the
TMs themselves—is a conflation of human
computation with machine computation as a way
of conceiving of the machine in the first place1.
This starts with Turing’s original focus, namely,
human computers doing computations, being
seamlessly transformed into machines doing
computations in what are presented as equivalent
ways. That originating conflation is stubborn
and has underpinned misunderstandings about
the capabilities of machines and humans in
discussions of AI ever since (cf. Collins, 1990;
Brooker et al., 2019a). What we seek to provide
here is a praxeologically-oriented corrective to
that conflation, a corrective which at the same
time will make Turing’s work visible again. We
will do so via an account of ‘getting the TM to
compute’, which displays just how machine
computation rests on human activity (e.g., on the
production and delivery of machine instructions),
in every case, at all points. Though these machines
can be used to do profoundly impressive things,
they do not set up or operate themselves, and
focussing on the practicalities of what must be
done (by people) to get the machines to work
affords some clarity to a set of fields where
distortingly inflationary discourses can tend to
prevail (cf. Elish and boyd, 2018; Brooker et al.,
2019a; Campolo and Crawford, 2020; Mair et al.,
2021).

Modern computational technologies are,
of course, far more sophisticated than Turing’s
original examples, but, as with Turing’s machines,
we will continue to misunderstand their capa-
bilities if we insist on recasting them as somehow
either directly mirroring human practices or as
working ‘on their own’ (cf. Suchman, 2006; Holton
and Boyd, 2021). While many regard attempts to
define AI as a fools’ errand—part of the phenom-
enon not a means of bringing it into view (e.g.,
Seaver, 2019) —we believe the only serious means
of addressing AI is to get a more precise handle
on what these technologies do and how. This is
why we use this paper to develop an “alternate”
(Garfinkel, 2002: 72-73) reading of Turing’s 1936
paper, “On Computable Numbers, with an Appli-
cation to the Entscheidungsproblem”, a return to
Turing that helps us recover what is involved in
building a machine that, allegedly, and at its most
foundational level, ‘does things for itself’.

 More specifically, by drawing out lessons
from a re-enactment of Turing’s methods as a
site which opens up the praxeological “founda-
tions” of AI in under-appreciated ways (Lynch et
al., 1983: 208; Garfinkel 2022: 182), we will suggest
the interesting question raised in “On Comput-
able Numbers” is less about the possibilities of
designing machines that “can think” (Turing,
1950), but the practical work we do, and which is
made possible, when we ourselves set out to think
like machines, i.e., when we are devising instruc-
tions and frameworks for instructing machines to
performs tasks such as calculating.

Turing’s contribution in “On Computable
Numbers”—an imaginative as well as formal one
that cut across logic, mathematics, engineering,
philosophy and psychology—was a demonstra-
tion that mathematical and logical operations
could be broken down into elementary, mechani-
cally executable operations that are devoid of
intellectual content and can be implemented
without understanding. If we follow Turing’s
computational methods, these are operations
which can be carried out by machines; Turing
Machines, as they have since come to be known.
Indeed, by respecifying the doing of math-
ematics and logic in the particular ways that he
did, i.e., as strings of elementary non-intellec-
tual processes, Turing showed machines could

Saha et al

68

be constructed which could in principle carry
out any operation capable of being computed
whatsoever2, depending only on the ingenuity,
accuracy and precision of the instructions they
were supplied with, becoming in the process what
he termed “universal machines” (Turing, 1936: 242;
Turing, 2005[1945]: 371-372), conceptual coun-
terparts to contemporary digital computers (see,
e.g., Piccinini, 2003: 28). The question remains,
however, as to how instructions for such machines
are to be formulated in any actual case. In
dialogue with a growing literature on data, algo-
rithms, automation, machine learning, artificial
intelligence and programming (e.g., Agar, 2003,
2017; Benbouzid, 2019; Brock, 2016; Brooker et al.,
2019b; Burrell, 2016; Burrell and Fourcade, 2021;
Elish and boyd, 2018; Fazi, 2016, 2018; Jaton, 2020;
Lee, 2020; Mackenzie, 2017; Rieder, 2020; Seaver,
2019; Smith, 2019; Ziewitz, 2016), we seek to open
up features of the work involved; work which
cannot be recovered from the machine through
cognitive analogies or models of thought or mind,
but only by attending to the practical activities
through which it is accomplished (Lynch et al.,
1983; Garfinkel, 2022). Based on our re-enactment
of the work of instruction in Turing’s paper as a
“tutorial problem” (Garfinkel, 2002: 145), we argue
that acquainting ourselves with ways of thinking
with and through the kinds of methods found
in Turing’s work helps us recover the computa-
tional foundations of AI via an understanding of
the practices involved in its achievement. Seen
thus, as we shall argue in conclusion, AI, as “engi-
neered design” (Garfinkel, 2002: 268), emerges as
a reproducibly instructable phenomenon (Lynch
and Lindwall, forthcoming). Following Turing’s
machinic respecification of computation through
and clarifying its grounds, we hope to contribute
to a more consistently deflationary position on
AI, dispelling AI’s “magic” (Elish and boyd, 2017;
Campolo and Crawford, 2020) and defusing its
“drama” (Ziewitz, 2016) by showing the activi-
ties attributed to AIs are achieved in the course
of methodic hands-on work with computational
systems and not exclusively by them. If we are
to recover the work practices through which AI
systems are crafted, however, we need to be alive
to the ways in which those practices are made to
disappear into those systems once built. Under-
standing how Turing first formalised that ‘disap-

pearing act’, we argue, provides important lessons
for anyone seeking to unpick its contemporary
equivalents in the field of AI, something we tease
out in the discussion with reference to AlphaGo
and its successor algorithms but which is an issue
with broader relevance still.

Conceptualising computation:
two ways of thinking
about Turing’s work
 Whether or not Turing’s work had any significant
bearing on the construction of modern comput-
ers is a contested issue (see, e.g., Sloman, 2002 on
Turing’s “irrelevance” there). Indeed, Agar (2003,
2017) has argued, “On Computable Numbers”
looked less to the future and the digital compu-
ter than back to the general purpose ‘machinery’
of government and the bureaucratic reorganisa-
tion of clerical work within it into simplified tasks
arranged in both serial and parallel orders as part
of a procedural, we might even say algorithmic,
division of epistemic labour. Nonetheless, Shan-
ker’s (1995) notes in his reflection on “Comput-
ing Machinery and Intelligence” (Turing, 1950),
Agar’s (2003) ‘governmental’ reading and ‘Turing
realists’ like Sloman share common ground. All
agree Turing’s early work (a) did influence those
involved in building the first generation of com-
puters, such as von Neumann, by offering them
an initial logical model (see Gandy, 1988), and (b)
retrospectively played a pivotal role in the forma-
tion of AI as a field in the 1950s by figures such as
McCarthy, McCulloch, Minsky and Simon, as it pro-
vided them with a clear sense of what the phrase
“Artificial Intelligence” could be taken to mean
when rendered computationally. In this sense, “On
Computable Numbers” represents a pivotal move
because in it Turing effects a logical refutation of
the proposal that computation could be treated
as part of analytic philosophy, i.e., as aprioristic,
deductive and strictly logically derived. In refuting
that proposal, he instead relocated computation
to a domain of practical, empirical, trial and error
work – computing, in the active sense – involving
the construction of devices for stabilising and test-
ing computability as a contingent matter (cf. Fazi,
2018). The paper crucially, therefore, worked as a
ground clearing exercise that helped establish
space for subsequent developments in comput-

Science & Technology Studies 37(2)

69

ing and what would come to be called AI. Central
to Turing’s contribution in this regard as the earli-
est published breakthrough in formulating poten-
tial bases for specifying ‘machine intelligence’
were what Shanker terms his “two questions”: “the
philosophical question …: Can machines think? …
and the psychological question: Do thinkers com-
pute?” (Shanker, 1995: 52). For Shanker (1995),

These two questions belong to very different
traditions. The former was a central concern
of English mathematicians in the nineteenth
century (e.g., Babbage, Jevons and Marquand);
the latter a mainstay of empiricist psychology in
Germany, England, and America. But Turing not
only regarded these two questions as intimately
connected: in fact, he thought they were internally
related—that in answering one you would ipso
facto be answering the other. The result was a
remarkable synthesis. (p. 53)

This intended synthesis had many strands and
we do not have space to fully set out Shanker’s
detailed examination of them here, though we
would encourage readers to consult Shanker’s
work for themselves (e.g., 1987, 1995, 2002). How-
ever, we do want to offer an outline of one aspect
of Turing’s work in “On Computable Numbers” as
part of rethinking how we might approach the
second question in particular.

 That said, offering an easily-digestible exegesis
of even a small part “On Computable Numbers” is
a far from straightforward task. For one thing, ten
of its eleven sections plus the introduction and
the 1937 appendix are given over almost entirely
to working through what for lay readers are formi-
dably complex problems of mathematical logic—
without the requisite background in mathematics
and mathematical logic, a background which
Turing could reasonably assume his contempo-
rary readers had, these sections are opaque to say
the least (though see Petzold, 2008 for a helpful
line-by-line discussion as well as, e.g., Agar, 2003,
2017, Fazi, 2016, 2018 and Gandy, 1988 for more
wide-ranging and differently oriented accounts).
For another, the work Turing does within the
paper is transgressive; grounded in mathematical
logic but crossing into philosophy, speculative
engineering and psychology in an idiosyncratic
fashion. Nonetheless, despite—indeed, because
of—these difficulties, the paper contains valuable

lessons. It occupies an important place in Turing’s
intellectual programme because it is there where
Turing formalises his respecification of compu-
tation with reference to the activities of human
computers, that is, individuals undertaking the
work of calculation. This is part of the framing of
the paper in §1— “We may compare a man in the
process of computing a real number to a machine”
(1936: 231)—and the focus of §9, more specifically
Turing’s “appeal to intuition” (1936: 249), which
elaborates on the basis of that comparison. It is
from there, following Shanker, that we take the
argument up.

 The first point to note is that during the time
Turing was writing his 1936 paper, (i.e., prior to the
introduction of machines to do the work), human
computers were employed in government and
industry to perform long and time-consuming
mathematical operations based on instructions
issued to them (see Agar, 2006). In a context where
calculative operations had already been rendered
increasingly ‘mindless’ through an atomising
clerical division of labour driven by large corpo-
rations and governments over decades if not a
century or more (Agar, 2003, 2017)3, Turing sought
to reduce their work even further to its behavioural
minima. In Turing’s analysis, while the outcomes of
that work could be highly sophisticated, the indi-
vidual tasks these human computers performed
seemed simple and did not appear to have to be
treated as involving any deep, complex mathe-
matical reasoning beyond writing down symbols
one after another according to a prescribed series
of steps accessed by looking up input tables and
logbooks. As Shanker puts it, Turing was reim-
agining a typical human computer “performing
the most routine of calculating tasks in order to
… break calculation down into its elementary …
units” (1995: 74). As those units, those behavioural
minima, could be shown to be “devoid of intelli-
gence” and mechanistic in their operations, Turing
notes we “may now construct a machine to do the
work of this computer” (Turing, 1936: 251). Such
machines came to be dubbed “Turing Machines”
and proved influential as Turing showed that they
could be used for computation on a formal and
thus provably rigorous, logical and mathematical
basis. With this machinic respecification of the
problem of computability in hand, Turing could
argue that “the machine’s ‘behaviour’ … satisfies

Saha et al

70

our criteria for saying that it is ‘calculating’ because
its internal operations are isomorphic with those
guiding the human computer” (Shanker, 1995:
80). The equivalence is established on this basis:
bracketing the material and situational differences
between them, machines can be said to be calcu-
lating, on Turing’s analysis, because they are doing
what human computers do when they ‘compute’,
i.e., working through ‘recursive functions’, algo-
rithmic chains of elementary operations; and
when human computers calculate they are doing
what computing machines do, i.e., working
through the same recursive algorithmic functions
composed of simple steps albeit at the time in
lengthier and more complex combinations. In
Davis’s (1978) summary,

Turing based his precise definition of computation
on an analysis of what a human being actually does
when he computes. Such a person is following
a set of rules which must be carried out in a
completely mechanical manner. Ingenuity may
well be involved in setting up these rules so that
a computation may be carried out efficiently, but
once the rules are laid down, they must be carried
out in a mercilessly exact way. (as cited in Shanker,
1995: 73)

In Turing’s work, exactly the same parameters
were to be applied to computing machines as to
human computers because their operations were
designed to “include all those which are used in
the computation of a number [by the former]”
(1936: 118; see also Gandy, 1988; Piccinini, 2003;
Sieg, 2009).

 Shanker goes on to critically deconstruct
Turing’s account with respect to the drawing of
that equivalence, “question[ing] the whole basis
of Turing’s interpretation of the logical relation in
which algorithms stand to inferring, reasoning,
calculating, and thinking” (1995: 81-82). He does
so, with reference to Wittgenstein, by showing
that our practices of calculation are not the same
as the operations of the computing machine
(see also Collins, 1990 for related arguments).
Shanker’s response to Turing’s second question
is consequently a negative one: humans do
not compute in the same terms machines do.
However, while we endorse Shanker’s analysis,
we want to take the discussion in a somewhat
different direction, picking up on matters

Shanker and others have left unremarked. Those
matters are foreshadowed in Davis’s gloss above,
“Ingenuity may well be involved in setting up
… rules so that a computation may be carried
out …” and take us to Turing’s stated objective
of “construct[ing] a machine to do the work of
… [a] computer” (again, as cited in Shanker,
1995: 73) and not just one capable of handling
single computations but whole classes of them
– Turing’s “universal computing machine” (1936:
241). Just what is this ingenuity and just how
is to be embodied in the construction of such
a machine? Insofar as Turing is presenting a
conceptual blueprint for that machine and was
thus himself engaged in computing work, what was
he doing and how? Finally, how might that work
be recovered from Turing’s published accounts of
it?

Just as with the work of the human computer it
is said to derive from, the work of the machine as it
computes is entirely unlike the (human) work that
goes into setting it up to do so. Yet while distinct,
in this case the two are intertwined. Indeed, and
in an important sense, ‘the machine’, such as it is,
can be seen as being constituted by its tables of
instructions and thus the work that has gone into
formulating them (Turing, 1936: 243). Here then,
contra Shanker, we do have an internal relation.
However, when we start to look within Turing’s
paper for the work of devising those instructions,
of thinking in mechanical terms about computa-
tion for the purposes of building an instructed
and instructable machine, we find we can locate
the machine easily enough but the instructive
work that constitutes it proves much more elusive.

 In his later 1945 report on the construction
of the Automatic Computing Engine or ACE,
Proposed Electronic Calculator (reproduced in
Copeland, 2005), Turing (2005) notes

It is evident that if the machine is to do all that
is done by the normal human operator it must
be provided with the analogues of three things,
viz. firstly, the computing paper on which the
computer writes down his results and his rough
workings; secondly, the instructions as to what
processes are to be applied; … thirdly, the function
tables used by the computer must be available in
appropriate form to the machine. (p. 371, emphasis
added)

Science & Technology Studies 37(2)

71

He (Turing, 2005) goes on:

It is intended that the setting up of the machine
for new problems shall be virtually only a matter
of paper work. Besides the paper work nothing will
have to be done except to prepare a pack of …
[punch] cards in accordance with this paperwork,
and to pass them through a card reader connected
with the machine. There will positively be no
internal alterations to be made even if we wish
suddenly to switch from calculating the energy
levels of the neon atom to the enumeration of
groups of order 720. It may appear somewhat
puzzling that this can be done. How can one expect
a machine to do all this multitudinous variety of
things? The answer is that we should consider the
machine as doing something quite simple, namely
carrying out orders given to it in a standard form
which it is able to understand. (p. 372, emphasis
again added)

The phrases “instructions as to what processes are
to be applied … available in appropriate form”/
“orders given … in a standard form” make it clear
that Turing was seeking to devise a framework—
a set of reproducible methods—for working
through the instructions these machines were
to be given as the basis of that “standard form”.
Turing’s machines could do all manner of things if
instructed in the right way but, as we can see, that
hinged on working out the instructions, exercising
the “ingenuity” Davis points to along the way. Put
differently, there is lots of relevant action—i.e., the
careful design of instructions that can be supplied
to and carried out by a machine, yet which will
have some meaningful purpose resulting from
their execution (i.e., will be able to be made sense
of and thus made relevant in a specific social con-
text)—bracketed off here as “only a matter of
paper work”. Yet nowhere is it made clear just how
that “paper work” is to be done. While this unspec-
ified set of activities is almost entirely glossed over
by Turing, we argue it sits at the foundations of AI
then and now, foundations we attempt to exca-
vate praxeologically in what follows.

Human-machine asymmetries as a tutorial
problem
As we have begun to explore in a preliminary
way above, it is not exactly the case that Turing’s

model treats humans and machines as engaged
in the same activities—the very articulation of the
mechanisms of a Turing Machine by Turing him-
self shows us otherwise. There is, instead, a ‘pair-
ing’ here, i.e., the framing of the instructions and
the instructed operations of the machine, but they
are not reducible to one another, and their inter-
nal relations are alternately asymmetric as Garfin-
kel (2002: 114) puts it. That is, it is possible to get
from the first to the second (indeed the instruc-
tions, which are often materially encoded in the
case of digital computers, define ‘the machine’) —
but not the other way round. Reading Turing’s 1936
paper, however, as we have noted above, provides
little sense of how he constructed the machine at
least explicitly4. Nor can the work which went into
figuring out those instructions and putting them
into a “standard form” be recovered by looking at
the inputs and outputs of the machine alone. The
practical work of “making a universal machine”
(Jaton, 2020: 103) is thus missing from the picture,
and while that is not problematic for all purposes,
it does highlight a praxeological gap for those
seeking to understand ‘autonomous’ machines
more generally, not least because a consideration
of Turing’s own methods shows us the two cannot
be meaningfully separated out.

One way to recover Turing’s prototype methods
could be via a detailed examination of “On
Computable Numbers”, working through what
Turing was doing in its successive stages as part
of a critical textual hermeneutics of computation
(cf. Fazi, 2018). However, following Garfinkel’s
later work (e.g., 2002, 2022) and the example of
studies by the likes of Livingston (1986), Bjelić
(1996), Sormani (2016), Sharrock and Ikeya (2000),
and others (e.g., Brooker and Mair, 2022), we want
to instead proceed somewhat differently and
“misread” Turing’s 1936 paper, treating it not as
an established logico-mathematical proof but an
instructional guide for “construct[ing] a [Turing]
machine” that we ourselves can attempt to follow
as part of a course of “technical self-instruction”
(Sormani, 2016: 102-136) in the foundations of
AI. In this, the text of the paper furnishes “clues”
(Bjelić, 2003: 133-136). While we would certainly
not suggest Turing’s methods are the only way
of constructing them, our misreading provides
an occasion for a pedagogic tutorial in the work

Saha et al

72

of making ‘computing machines’ via a consid-
eration of their instructed character. Through
that tutorial, we want to consider the lessons
that might be learned from gaining a first-hand
appreciation of their constitution. In this case we
will use different diagrams as part of a re-enact-
ment designed to demonstrate the workings of a
paper TM assembled from scratch for a particular
computational purpose. These diagrams are not
part of Turing’s paper but intended as pedagogical
devices to guide readers through the machinery
of TMs and make them instructably observable,
in Garfinkel’s phrase (2002: 136), in relation to the
specific courses of specific action and reasoning
that machinery is coupled to. It is with this in mind
that we invite readers to draw out their own TM,
as per the instructions below, and follow along
with the operation of those instructions to see
the praxeological sense they have first-hand. For
those who might benefit from a further talk-
through of our TM, see Clip 1 below. Voiced by a
machinic narrator, the choppy, robotic delivery is
fitting given our subject matter.

Our approach here is novel in the sense that
most analyses of Turing’s work take up its implica-
tions for two domains. On the one hand, its impli-
cations for philosophy, logic, mathematics and
formal theories of computation and AI (as in, e.g.,

Fazi’s (2018) work); and on the other hand, for the
practical construction of digital computers and
‘artificially intelligent’ systems and the economic,
social, political and cultural developments,
positive and negative, both have shaped but have
also been shaped by (as in, e.g., Agar’s 2003, 2017
work). As a result, Turing’s machinic respecifica-
tion of ‘intelligence’ as a practically reproducible
matter of computational engineering, has not
been traced through in relation to the situated
courses of methodic work in and through which
Turing developed it. This ‘missing’ element in treat-
ments of Turing’s work, how it might be opened
up and what it might reveal is something we came
to notice on the basis of reading Turing alongside
prior ethnomethodological studies of scientific
and technical practice, including Ziewitz’s (2017)
“experiments with the ethnomethods of the
algorithm”. In circumstances where the original
courses of practical activity being explored are
inaccessible, as is the case in relation to Galileo’s
demonstrations (Garfinkel, 2002; Bjelić, 1996,
2003; Livingston, 1995b) or Goethe’s experiments
with colour (Bjelic and Lynch, 1992), through
re-enactments of demonstrations and experi-
ments, ethnomethodologists have sought to
make at least some of the contingent specifici-
ties of the practices involved available again, “for

Clip 1. Video: “A machinic talk-through of a Turing Machine”. This video is available at: https://www.youtube.com/
watch?v=Ln_WC9pARoE

Science & Technology Studies 37(2)

73

another next first time” (Garfinkel, 2002: 98, 216).
Since re-enactments are by their nature subject
matter specific, this study is, thus, a contribution
to, rather than an application of, a growing body
of work in ethnomethodology that mobilises
re-enactments in engagements with science
and technology. At the same time, it is also a
contribution to debates about diversifying meth-
odological repertoires within STS (Lippert and
Mewes, 2021; Silvast and Virtanen, 2023). On the
latter, ethnomethodological re-enactments can
profitably be read alongside related work being
developed in other areas of STS (see, e.g., Kirksey
et al., 2021). While the ethnomethodological
character of studies such as ours is distinctive,
we also view such studies as sites for productive
dialogue in STS, as our own engagement with the
work of Agar, Jaton, Fazi and others goes some
way to demonstrating.

Re-enacting Turing: “On
Computable Numbers” as a site
of technical self-instruction
An important initial question for any such endeav-
our, as Bjelić notes (2003: 133), is; where to start?

Before we could begin to construct our own TM,
our initial engagement with Turing’s text made
it clear we needed to familiarise ourselves with
its constituents. Consulting Turing’s ‘recipe’, we
learned a TM should be imagined consisting of
three or four central components, all of which
draw upon an assumed familiarity with objects
such as magnetic tape recorders or punched card
readers, key technologies of Turing’s day. First, a
‘tape’ which is divided into equal-sized blocks
where each block can contain a single symbol at
most (see Figure 1). Second, a ‘head’ or a scanner
which can move either left or right to scan the
symbols written on the tape, with the machine
also having the capacity to erase an existing sym-
bol or write a new symbol on the tape. At any
given time, Turing tells us, the machine is in a par-
ticular ‘state’—therefore, a means of recording
and identifying the current ‘state’ of the machine
is required too. That identifiable machine ‘state’,
i.e., what at any moment it is set up to do, is the
third component of a TM. Based on the state and
the symbol currently being scanned, a TM deter-
mines which instruction is to be carried out next.
These instructions are to be represented in a
table-like format (see Figure 1) akin to the tables

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A blank WRITE 1

HALT

Instruction Table

Head scanning symbols

written on the tape

A State

Symbols

Head (Scanner)

Tape
10

Figure 1. Components of a Turing Machine

Saha et al

74

human computers would follow. This ‘instruction
table’—Turing calls them ‘configuration tables’
because they constitute structural arrangements
of the machine—is the fourth and final compo-
nent of a TM. While the third and fourth com-
ponents can be combined, it made sense to us
to keep them separate as it allowed us to more
easily track and make explicit the logic of the
machine’s parts in terms of their respective func-
tions, particularly important given our machine
was to be used as a demonstration device. Mov-
ing from the formal recipe to a working version
of the diagrammed schematic depicted in Figure
1 helped us in that regard but it remained a pre-
liminary step. We still needed to work through a
set of operations which would enable us to both
explore and elaborate how we could animate the
machinery, putting it to computational work, and
for that we needed a concrete application, some-
thing the TM could process and in as clearly fol-
lowable a form as possible.

For our present purposes, we decided to take
a simple arithmetic operation as our “tutorial
problem” (Garfinkel, 2002: 145) so we set out to
build a TM based on our schematic that could
check if a number is divisible by three. The first
issue we faced was this: how would we use the
“engineered design” (Garfinkel, 2002: 268) Turing
bequeathed us and which we had just famil-
iarised ourselves with to determine divisibility
by three? We needed something that could be
sequentially processed through elementary non-
intellectual steps and which could operate in line
with the components listed above. We thus had
to formalise the problem. We settled on finding
the remainder left when we divide a number by
three as it allowed us to introduce a binary logic
to the machine’s operations. That is, if the machine
indicated that a remainder was zero, we could
then conclude the number was divisible by three.
If the machine gave us back any number other
than zero, we could conclude the reverse. This
way of finding remainders is called a ‘modulo
operation’ in computing. While modulo operations
can be performed with any two numbers, to keep
our TM as simple as possible we restricted the
divisor to 3. However, the dividend in this case had
to be extended to any possible natural number if
our TM was to do its projected job. In setting the

TM up, we were, then, directing it to work through
how many times the divisor would go into the
dividend—whatever number that might happen
to be—and we were to call that number the
quotient, and whatever was left over we were to
call the remainder. For example, if we divide 7 by
3, we get 2 as the quotient (as 3 goes twice into 7)
and 1 as the remainder (7−(3∗2)=7−6=1). If
we were able to set our TM up effectively, it should
indicate the remainder is not zero in this case,
enabling us to conclude that 7 is not divisible by 3.

From many examples like this one, we can
derive the following formalisation/formula:

remainder=dividend – (divisor∗quotient)

It was this formula we generalised into a method
for finding remainders that we wanted to imple-
ment using a TM. To simplify our local specifi-
cation of Turing’s design further, reducing the
parameters of the problem operationally, we real-
ised we should restrict the symbols on our TM’s
input tape to 0, 1, 2 and ‘blank’—for ‘do nothing
else’ or ‘halt’—as the only symbols which could
be scanned, thus limiting the number of instruc-
tions we would have to write for it. On top of this,
informed by the way digital electronics offers sim-
pler implementation for binary systems, we would
opt to use binary numbers to represent the divi-
dend as part of reducing the number of symbols
required to represent it. If we were to opt instead
for the decimal system, we would need a set of 10
symbols (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) and a much
more complex set of accompanying instructions
by extension. Using the binary system to codify
the dividend, by contrast, meant we would only
need to use two symbols (0 and 1) to represent
any natural number. This would also reduce the
number of configurations required to perform
the computation. These choices had a neat sym-
metry: our TM would only need to be able to read
and write 0, 1 and 2 as we could use 0 and 1 to
represent every possible dividend from a given
input sequence; and we could also use all three
of them for our output sequence with 0, 1 and 2
as the only possible remainders when we divide
a number by three. The ‘blank’ symbol would be
there to instruct the TM to stop. Finally, to further
simplify our TM in comparison to those in Turing’s

Science & Technology Studies 37(2)

75

paper, we disallowed backtracking and instead
restricted the TM to moves in one direction. That
is, our TM would not go backwards and forwards
along the tape selectively, but instead ‘dumbly’
proceed through the symbols it was presented
with one by one in linear sequential order.

 Our strategy from there in implementing this
‘solution’, as such things are called, was to start
at the simplest possible point, at first working
on and testing instructions we’d need to set out
for checking the three-divisibility of an ‘easy’
number that would have 0 as the dividend. Then
we wanted to gradually increase that number
with every subsequent step so as to ensure our
TM would not skip potentially relevant cases and
help us to see what we would need to do to get
the TM to handle any number. For each of those
steps we would write down the tabular instruc-
tions—the machine configuration—required to
perform the computation in that step, a way of
“reverse engineering” the computational mecha-
nisms we needed the TM to be built around step-
by-step in parallel with the unfolding logic of
the solution we were seeking to develop via the
TM (see Brooker and Mair, 2022). In other words,

rather than work out the instructions in advance,
we would specify them as we went along to give us
the results we expected in relation to the compu-
tational problem at hand (an approach we might
characterise as central to programming’s work
more generally).

Understanding the components and having
a plan is one thing, however, putting both into
action another. How to get the TM going? As we
learnt from Turing, a TM can be started with an
input string—a sequence of symbols written
somewhere on the tape—as long as we specify
all the states at which the machine can start
scanning that input string. However, the machine
can only have a finite number of states so some
of these states need to be denoted as ‘START’
states. Similarly, we also needed ‘END’ states to
instruct the machine when to halt its operations
i.e., at the end of computation. In any given state,
a TM can find any possible symbol accepted by
the machine, and thus, we needed to write all the
possible combinations of states and symbols in
the instruction table so as to avoid our TM encoun-
tering trouble in the form of missing instructions.
This way a TM instructably moves from a START

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT Head remains in state ‘A’

and moves to the next block

A

0

A

0

Figure 2. Three-divisibility of ‘0’

Saha et al

76

state to an END state to perform a given computa-
tion.

 With all that covered and retracing the ground
of our re-enactment, let us start by checking
the three-divisibility of 0: as 3 is not contained
within 0, both the quotient and the remainder
(0−(3∗0)=0) are 0 in this case. The binary
representation of 0 is also 0 and we write it down
on the tape (see Figure 2). So, in this case, at the
beginning of the computation, the TM will find 0
on the tape. Following Turing’s instructions more
or less, this is the ‘START’ state of the machine and
we represent it as ‘A’. So, the current symbol at the
current state ‘A’ is 0. When the machine is in this
situation, we instruct it to remain in state A and
move the scanner to the right. We write down this
instruction under the ‘RULE’ column of our instruc-
tion table. At this stage, our instruction table looks
like Figure 2.

As instructed, the TM’s scanner moves to the
next block, and it finds a ‘blank’, an empty block
that does not contain any symbol (see Figure 2).

So, currently the state is A, and the symbol is blank.
In this case we already know that the remainder
should be 0. So, we instruct the machine to write
down the output 0 at the current empty block and
halt the computation (Figure 3). This particular
state where the TM halts its operations is one ‘END’
state of the machine. This way for input 0, we can
find the correct output 0 as the remainder, with
zero being divisible by any integer.

Next, we move from considering the three-
divisibility of 0 to considering that of 1, which is
01 in binary. So, instead of a blank, imagine that
our scanner encounters a 1 in its place in the last
step (i.e., the sequence becomes 01 (see Figure
4)). However, in this case, the machine needs to
be moved into a new state because our instruc-
tion table does not yet contain any instructions
to address the case when the remainder is 1 (
1−(3∗0)=1). We will call this state ‘B’.

 As instructed, the TM will move its scanner
to the next block, and it will find another blank
there. Where the current symbol is a ‘blank’ and

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A (END) blank WRITE 0

HALT

TM writes ‘0’ and halts its

operation

A

00

Figure 3. Three-divisibility of ‘0’ (contd.)

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A blank WRITE 0

HALT

A 1 SET STATE B

MOVE

RIGHT

A

10

A

10

Figure 4. Three-divisibility of ‘01’

Science & Technology Studies 37(2)

77

the current state is ‘B’ (see Figure 5) we have a
new situation for our machine, and it needs to
be represented in the configuration table. As
we know the remainder in this case is 1, we will
instruct the machine to write 1 before halting its
operations as per the updated instruction table

n Figure 5. In terms of how we progressively
built our learning into the instructions we were
developing as we moved along, because we
were representing our dividend in binary, at
the beginning of a computation, i.e., in the TM’s
START state, our TM could encounter either 0 or 1.

Figure 5. Three-divisibility of ‘01’

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A (END) blank WRITE 0

HALT

A (START) 1 SET STATE B

MOVE

RIGHT

B (END) blank WRITE 1

HALT

TM writes ‘1’ and

halts its operation

B

B

10

110

Figure 6. Three-divisibility of ‘010’

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A (END) blank WRITE 0

HALT

A (START) 1 SET STATE B

MOVE

RIGHT

B (END) blank WRITE 1

HALT

B 0 SET STATE C

MOVE

RIGHT

C

010

B

A

010

A

010

010

Saha et al

78

We had just worked through the situation where
our TM encountered 0 in its START state (Figure 3)
and thus, to incorporate that, we also needed to
add the ‘(A, 1)’ configuration to the table in Figure
5 as another possible START state. In this way, our
list of instructions started to grow and feed into
one another.

Now, if the sequence did not end there and
the scanner finds 0 instead of blank in the last
step, the sequence now becomes 010 (see Figure
6) which equals 2 in the decimal system. In this
case, the remainder should be 2 (2−(3∗0)=2).
This is again a new situation, so we again need to
instruct the machine as to what should be done
in this case.

First, following Turing again, we will call this
state ‘C’. After scanning 0, 1 and 0 respectively,
as the machine is in state C, if it finds a blank in
the next block, we need to instruct the machine
to write 2 as the remainder in this place before
halting the operation (see Figure 7). This is another
possible END state where the machine could
terminate its operations. As even a small number

of initial cases makes clear, we could continue
the same kind of procedure for all the subse-
quent numbers, devising instructions for different
scanned sequences as we go.

Knowing a priori that mathematically there
cannot be a remainder larger than two, we now
anticipate that when applying these instructions
to numbers larger than two we will see a pattern
in the output where 0, 1 and 2 keep appearing as
outputs in an orderly manner as we add digits at
the end of our sequence. It is also notable that we
have developed three categories of states to deal
with three-divisibility through the step-by-step
work we outlined above. We capture this pattern
in our final instruction table (see Figure 8) where
all the potential outcomes are accounted for and
it is in that way that we determine whether it is
possible to find the remainder when we divide a
number by 3 using our TM. We can therefore now
test our TM with a binary sequence like 1001 to find
out if it can correctly find the remainder and check
if our intuition about the pattern in our sequences
is correct. 1001 equals 9 and the remainder in this

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A (END) blank WRITE 0

HALT

A (START) 1 SET STATE B

MOVE

RIGHT

B (END) blank WRITE 1

HALT

B 0 SET STATE C

MOVE

RIGHT

C (END) blank WRITE 2

HALT

TM writes ‘2’ and

halts its operation

C

2010

C

010

Figure 7. Three-divisibility of ‘010’ (contd.)

Science & Technology Studies 37(2)

79

case is 0. If we follow the instruction table in the
following order, the machine will eventually write
0 as output. We again invite readers to verify our
TM’s instruction table by working through their
own test inputs at this point.

The diagrammed demonstrations above prove
that the instruction table we have devised works
for any possible natural number: this TM can solve
not just a problem but a “class of problems” (Living-
ston, 1995a: 113). Our solution thus constitutes an
‘effective procedure’, i.e., a mathematically sound
algorithm, because it is a generalised solution
to the computational problem we set ourselves

where the solution is reached by following a finite
set of instructions. The process by which we have
determined divisibility by 3 is effective in these
terms because it adequately captures elemen-
tary, mechanisable and thus ‘computable’ steps in
Turing’s sense adequate to undertaking the task
as specified (i.e., ascertaining the three-divisibility
of any natural number).

The divisibility problem in our demonstration is
described in terms of the observable and observed
constituents of the problem’s arithmetic proper-
ties as they became computationally relevant in
the context of building our TM; “normal troubles”

CURRENT

STATE

CURRENT

SYMBOL

RULE

A (START) 0 SET STATE A

MOVE

RIGHT

A (END) blank WRITE 0

HALT

A (START) 1 SET STATE B

MOVE

RIGHT

B (END) blank WRITE 1

HALT

B 0 SET STATE C

MOVE

RIGHT

B 1 SET STATE A

MOVE

RIGHT

C (END) blank WRITE 2

HALT

C 0 SET STATE B

MOVE

RIGHT

C 1 SET STATE C

MOVE

RIGHT

A

01001

A

B

C

A

B

1001

1001

1001

1001

1001

 Figure 8. Three-divisibility of ‘1001’

Saha et al

80

(Garfinkel, 1967) of getting the machine to work,
as and when we encountered them. If we were
to set out to solve this problem using a modern
programming language like Python or Java, we
would not have to build a TM at all—indeed, such
languages are often dubbed ‘high level’ precisely
because their operations are rarefied far beyond
the mechanical aspects of transistors switching
between binary states. However, each time
programmers write a program to solve a math-
ematical or logical problem like this, regardless of
their language of choice, they have to engage in a
process of mapping that problem into processes
that can be handled within the computational
systems they are working with, just as we have
here. The formal possibility of so doing is exactly
what Turing demonstrated in his paper.

Discussion
Turing wanted to make his machines “automatic”,
dependent only on a set of pre-defined configu-
rations for their operation. These machines run
“automatically” in the sense that once initialised,
“external operators” are only needed when the
computation cannot move forward without fur-
ther inputs from them (Turing, 1936: 232). As a con-
sequence, the role of human workers (allegedly)
ends in designing and implementing the instruc-
tion table, and once it has been implemented, as
long as all outcomes have been anticipated and
are handled accordingly, the machine should be
able to carry out the instructions in the prescribed
order. Hence, as we have seen first-hand by vir-
tue of undertaking this exercise, mechanising a
computational procedure also includes eliminat-
ing the work that went into devising that proce-
dure in the first place. Once it was complete, we
no longer appeared in the TM’s running, in spite
of the TM’s operations sense and meaning only
being furnished by reservoirs of practical, mun-
dane reasoning about problem decomposition
that we had to engage in, through and as part of
the TM’s very construction. Our situated courses
of practical reasoning in assembling our TM were
progressively ‘enchained’, to adapt a phrase from
some of Garfinkel’s (2022: 189) recently published
work, in the TM’s operations.

This leads us back to the computing work
Turing was doing in the 1936 paper. Seen in a
praxeological light, Turing’s paper furnishes a
logico-mathematical or conceptual programme—
a set of methods—for assembling a computing
machine, with the sections offering instructions
as to what goes into their assembly and how they
are to be engineered to execute calculations. We
showed that this involved putting the opera-
tions of the Turing Machine centre stage while
backgrounding the methodic work Turing did in
setting out the instructions it could be capable
of following. What makes the latter difficult to
recover—and what necessitated the re-enact-
ment—is the intentional elision of the operations
of the machine and the methods for instructing it,
with the latter seemingly written ‘into’ the arrange-
ments of the machine (the sense of which, albeit,
can only ever be recovered via further practices
of local reasoning). This is, therefore, a phenom-
enon that consists of two irreducible parts and
so is ‘paired’ in ways that Garfinkel (2007) as well
as Livingston (1986) and Bjelić (2003) sought to
elaborate in their work from the 1970s on. That is,
we have the formalisation of the computation in
the form of the TM itself, on the one hand, and the
practical work of composing the instructions that
constitute it, on the other, and the two are inextri-
cably linked.

 In our attempt to solve an arithmetic problem
using a TM built ‘from scratch’, the computa-
tional work involved became recognisable in and
through the steps of ordering the instructions to
it. That is, the solution’s generality became evident
in the followable character of those constitutive
instructions from within the process of imple-
menting that solution via the specifics of the TM’s
engineered design. In the course of that compu-
tational work, when those instructions were
followed in a ‘mechanical’ fashion, we arrived
at something that could be worked through as
a solution to our problem, which in turn proved
that an effective procedure or algorithm exists
that solves an entire class of arithmetic problems,
however limited those problems might have
been. In other words, the formal construction
of our abstract machine through the composi-
tion of instructions was what yielded an effective
procedure or algorithm, albeit an unwieldy one.

Science & Technology Studies 37(2)

81

The formal representation of our efforts—the
instruction table—does not, however, make the
situated and contingent character of the work
that has informed it evident. This is precisely why
we sought to specify the practices that informed
the TM’s computational workings. The practical
‘details’ of our computing work do not have to
be and are not made explicit in the process of
achieving such things as formalisation, generali-
sation and reduction, just as they are not made
explicit in Turing’s (1936) original demonstration.
In our case, it was the instruction table which
made our abstract machine ‘automatic’ in Turing’s
terms, while we found the work of formalisation,
generalisation and reduction as its “shopfloor
problem” constituents, i.e., practical problems we
had to solve to get going with the building of a
working machine (Garfinkel, 2002). These constit-
uents can only be accessed in and through the
‘lived work’ of computation, be it on paper while
building TMs or on screen while writing computer
programs. In the case of programming, it is the
computer programs that make those constituents
recognisable in the work of writing them. As such,
thinking like a machine emerges as the praxe-
ological supplement to ‘the thinking machine’;
this ‘thinking machine’, then, is silently supported
by the wealth of underlying reasoning practices
and hands-on work by and through which it is
produced.

 Turing’s practice shows us, therefore, that
methods of writing instructions in machine
executable terms are constitutive of the machines
so instructed. While we have applied rather than
rediscovered Turing’s design, our tutorial problem
has supplied us with important practical lessons
in that regard. To adapt Bjelić’s (2003) work on
Galileo to Turing,

When … [Turing] proposed the specifications
for the … [machine], he unintentionally left a set
of practical contingencies for … practitioners to
find and resolve according to the specific local
conditions of their work … [The] structures and
their descriptions of the discovery of … [effective
algorithmic procedures using those machines] are
available only where the discovery is reproduced.
(Bjelić, 2003: 135)

For instance, our capacity to produce a TM-based
solution to an arithmetical problem depended on
such things as: our choice of problem, an elemen-
tary mathematical and hence potentially cultur-
ally more accessible one (including, for instance,
unstated assumptions around the significance and
utility of operations such as determining divisibil-
ity); the formatting of inputs to the device as part
of the ‘language of instruction’; and the way in
which we built the TM around (and in line with)
equally elementary computational steps under-
taken in a sequence which we established as we
worked through it. Major issues Turing’s paper did
not help us settle but which we had to resolve by
‘best guess’ included: just how many components
can be said to be minimally involved in the con-
struction of a TM, three or four, and what might
formalising that either way make visible? And how
does ‘the tape’ being scanned come to us? Are
numbers already printed or are we to conceive
of ourselves as writing it as we go for demonstra-
tion and testing purposes? The way we developed
our procedure, the latter was more accurate even
though that meant the TM could ultimately han-
dle the former too. Our TM calculates remainders
as part of mechanically determining divisibility by
3; it does so ‘on its own’, but we now have a much
better sense of how this ‘on its own’ is foundation-
ally reliant upon a scaffold of elided, reasoned
activities. What we have come to see, by virtue of
our course of instruction in the TM’s specific mode
of operation, is that the relation and categorical
shift between humans and machines is something
we are diverted from seeing—no different to the
case for many new AIs—not because we lack an
understanding of intelligence, the brain or mind
but because of the very practices through which
computing machines are produced.

 Now, our TM does things for sure, but not in
the ways we ordinarily do nor even in the ways we
specifically did in working its design through; it
runs its operations on binary, for example, and we
worked them out that way, but we chose binary
over a decimal system, where the point (at least
on this particular aspect) is that we saw the sense
in which working with binary would be a useful
thing to do in this domain in just the same way
that the designers of contemporary AI systems
do, even those described as ‘autonomously intel-

Saha et al

82

ligent’. How the machines work is not a surprise,
in other words, but the outcome of a process of
practically stipulating parameters in pursuit of a
working model. Most importantly, as in Turing’s
work but as is also the case in programming work
more generally, all the choices and decisions we
made assumed and traded upon an open-textured
background of shared practices and understand-
ings against which an activity of this sort acquired
whatever cultural intelligibility it may be taken to
have. This is a lesson learned that may lead us to
take a more cautious approach to claims made on
behalf of new AI technologies which (some have
claimed, as outlined above) comprise AI’s much
heralded ‘autonomous systems’ that ‘do things for
themselves’. Take AlphaGo; one of the headlines
grabbing AI systems of the past five years. Our
re-enactment of Turing’s methods furnishes
insights into how we might approach such tech-
nologies. How so? We return to Jaton :

I shall … temporally define computer
programming as the situated activity of inscribing
numbered lists of instructions that can be
executed by computer processors to organize the
movement of bits and to modify given data in
desired ways … If I place emphasis on the practical
and situated aspect of computer programming in
my operational definition, it is because important
historical events have progressively set it aside …
[Once] computer systems started to be presented
as input-output instruments controlled by a central
unit – following the successful dissemination of
the so-called von Neumann architecture – the
entangled sociotechnical relationships required
to make these objects operate in meaningful
ways had begun to be placed in the background.
If electronic computing systems were, in practice,
intricate and highly problematic sociotechnical
processes, von Neumann’s modelization made
them appear as functional devices transforming
inputs into outputs. The noninclusion of practices
– hence their invisibilization – in the accounts of
electronic computers … led to serious issues.
(Jaton, 2020: 93)

While von Neumann’s formalisation of the com-
puter was a significant achievement, in other
words, it involved a specific kind of disappearing
act; that is, it problematically disappeared the
practical work of “making a universal machine”

(Jaton, 2020: 103) as well as the people who made
critical contributions to that work, engineers and
computers, many of whom were not, contra to the
received histories, white and male as Jaton points
out. But if von Neumann effected a disappear-
ing act of this kind, we believe it depended on a
prior one initiated by Turing who in his 1936 paper
succeeded in disappearing himself. As we have
shown above, a non-praxeological reading of Tur-
ing is liable to direct us away from the point that
even before hardware is built and ways to oper-
ate that hardware to perform meaningful tasks are
designed, the work of computation (e.g., mathe-
matics) has to be done; it will not do itself. Hence,
we must be alive to the contemporary versions of
Turing’s self-disappearing act if we are to prop-
erly get the measure of computation, especially
for “the new AI” (Fuchs and Reichert, 2018) where
the accompanying sales pitches and commentary
often obfuscate rather than illuminate just how
these systems work and have come into being (cf.
Holton and Boyd, 2021).

 Even those with an otherwise deep under-
standing of the issues can still fall foul of these
problems when it comes to assessing these
technologies. In a reflection on AlphaGo Zero, a
much more powerful successor to the AlphaGo
algorithm (created by Google DeepMind) which
beat the human world Go champion, Lee Sedol,
in 2016, Fazi (2021) makes allusions to a machine
operating purely autonomously from human
involvement:

While much of computer programming has
historically consisted in making human abstraction
significant and operative within the instrumental
remit of algorithmic machines, with deep learning
we face the opposite case: the abstractions and
consequent instructions the machine gives
itself now require interpretation for them to be
significant and operative for humans. The modes
of organisation, categorisation and classification
that belong to the abstractive operations of
these computational cognitive agents are indeed
incommensurable. Maintaining a theoretical focus
on the nature and possibilities of abstraction
as the balance moves between autonomy and
automation within AI thus involves acknowledging
and working with the prospect of modes of
abstracting that might arise within calculation
but also surpass the boundaries of human

Science & Technology Studies 37(2)

83

cognitive representation … [The] ‘autonomy of
automation’ … regarding abstractive operations
is demonstrated by a deep learning system
producing internal representations independently
from the phenomenological or experiential ground
of the human programmer … [In the] example of
AlphaGo Zero, such an autonomy is doubled: not
only the outputs but also the training inputs are
somewhat independent from human knowledge.
(Fazi, 2021: 15)

We take very seriously Fazi’s point that we need
to avoid conflating the operations of new AIs
with our practices, an incommensurability argu-
ment which parallels that of Shanker’s, and share
her scepticism with respect to totalising sys-
tems. However, Fazi has also here succumbed to
Google DeepMind’s successful disappearing act
in hinting at ‘independence’. For what is entirely
missing here is any account of how the research-
ers involved got from AlphaGo to the successor
algorithm and the work that went into it as an
“engineered design”—where to illuminate this
and recover the ways in which AIs are woven both
out of and into practices, an approach of the kind
we have outlined above is required. While Turing’s
machines are certainly unwieldy when judged
by contemporary standards—for instance, our
‘three-divisibility’ algorithm could be optimised
further rather than sequentially proceed through
numbers one by one ad infinitum—it is worth not-
ing that with enough time, patience and “ingenu-
ity”, to return to Davis, we could simulate AlphaGo
Zero using Turing’s components. The resulting
TM programme would be extremely complicated,
however, extending far beyond the instruction
table sketched above. That alone should alert us
to the dangers of any claim that automation has
been ‘automated’ or that an AI has achieved ‘inde-
pendence’ in this domain: AIs cannot produce
themselves, any more than any computational
system can, and we lose sight of that point—
and by corollary, the practices and material set
ups that do such important enabling work in the
realm of these machines—at our conceptual and
methodological peril.

Conclusion: grappling with
Turing’s ‘disappearing act’
As the burgeoning literature attests, the social
sciences and humanities, like much of the rest of
the world, are in the process of getting to grips
with the disparate technologies which comprise
the contemporary field of artificial intelligence
(AI) and which underpin its rapid and often highly
problematic advances over the last decade and
more. Real strides have undoubtedly been made
along that path—as interested publics, we all
understand a great deal more than we did even a
few years ago—but, we would contend, erasures
and misunderstandings persist. Here in particular,
and precisely because they have been designed
that way, it is all too easy to accept claims regard-
ing the agentic status of the new AI’s signature
systems without looking any further. In that con-
text and building on important work already con-
ducted on that front, we have tried to open up the
praxeological foundations of machine computa-
tion as a corrective to lingering reifications of the
‘thinking machine’ (Garfinkel, 2002). Reading Tur-
ing alternately, to draw on Garfinkel a final time,
we have argued that the construction of such
machines as a formal accomplishment constitutes
a paired phenomenon connecting the execu-
tion of a function with the writing of instructions
which enable that function to be so executed
while working within a particular computational
architecture. On this basis, we have argued that
the work of instruction represents an irreducible
praxeological supplement to the construction
of ‘the autonomous machine’ and while they are
asymmetrically related, they are mutually depend-
ent and mutually informative. Jones-Imhotep
(2020) has recently argued that machine auton-
omy is a carefully crafted performance on a stage
set for an audience with specifically cultivated
sensibilities who are primed to see the machine
in quite particular ways, i.e., as operating without
external intervention. If Jones-Imhotep is right,
we need to understand what goes into stabilising
such performances in the field of contemporary
AI, including the various disappearing acts per-
formed along the way, if we are to arrive at a more
consistently deflationary rather than inflationary
view of contemporary AI’s actual achievements. It
is only by proceeding in that way that we will be in

Saha et al

84

a viable position to show in any particular case, as
we hope to have done via our re-enactment, what
computers can do and how we help them to do it

Acknowledgements
We would like to thank the two anonymous
reviewers and the editor for their valuable com-
ments and suggestions. This research has been
funded by UK Research and Innovation (project
reference: 2273902) through the North West
Social Science Doctoral Training Partnership, and
the Engineering and Physical Sciences Research
Council (grant number EP/T022493/1).

Science & Technology Studies 37(2)

85

References
Agar J (2003) The government machine: a revolutionary history of the computer. Cambridge: The MIT press.

Agar J (2006) What difference did computers make? Social Studies of Science 36(6): 869-907.

Agar J (2017) Turing and the Universal Machine (Icon Science): The Making of the Modern Computer. London:
Icon Books Ltd.

Benbouzid B (2019) Values and Consequences in Predictive Machine Evaluation. A Sociology of Predictive
Policing. Science & Technology Studies 32(4): 119-136.

Bjelic D and Lynch M (1992) The work of a (scientific) demonstration: Respecifying Newton’s and Goethe’s
theories of prismatic color. In: Watson G and Seiler RM (eds) Text in context: Contributions to ethnomethod-
ology. London: Sage Publication, pp. 52-78.

Bjelić DI (1996) Lebenswelt structures of Galilean physics: The case of Galileo’s pendulum. Human Studies
19(4): 409-432.

Bjelić DI (2003) Galileo’s Pendulum: Science, Sexuality, and the Body-Instrument Link. Albany: State University
of New York Press.

Brock K (2016) The ‘FizzBuzz’ Programming Test: A Case-Based Exploration of Rhetorical Style in Code.
Computational Culture (5).

Brooker P, Dutton W and Mair M (2019a) The new ghosts in the machine: ‘Pragmatist’ AI and the conceptual
perils of anthropomorphic description. Ethnographic Studies 16: 272-298.

Brooker P, Sharrock W and Greiffenhagen C (2019b) Programming Visuals, Visualising Programs. Science &
Technology Studies 32(1): 21-42.

Brooker P and Mair M (2022) Researching Algorithms and Artificial Intelligence. In: Housley W, Edwards A,
Beneito-Montagut R and Fitzgerald R (eds) The SAGE Handbook of Digital Society. London: SAGE Publica-
tions Ltd, pp. 228-246.

Burrell J (2016) How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data
& Society 3(1): 205395171562251.

Burrell J and Fourcade M (2021) The Society of Algorithms. Annual Review of Sociology 47(1): 213-237.

Campolo A and Crawford K (2020) Enchanted determinism: Power without responsibility in artificial intel-
ligence. Engaging Science, Technology, and Society 6: 1-19.

Collins HM (1990) Artificial experts: Social knowledge and intelligent machines. Cambridge: The MIT press.

Elish MC and boyd d (2018) Situating methods in the magic of Big Data and AI. Communication Monographs
85(1): 57-80.

Fazi MB (2016) Incomputable aesthetics: open axioms of contingency. Computational Culture (5).

Fazi MB (2018) Contingent computation: abstraction, experience, and indeterminacy in computational
aesthetics. Lanham: Rowman & Littlefield.

Fazi MB (2021) Beyond Human: Deep Learning, Explainability and Representation. Theory, Culture & Society
38(7-8): 55-77.

Fuchs M and Reichert R (2018) Introduction: Rethinking AI. Neural Networks, Biometrics and the New Artifi-
cial Intelligence. Digital Culture & Society 4(1): 5–13.

Gandy R (1988) The confluence of ideas in 1936. In: Herken R (ed) A Half–Century Survey on The Universal
Turing Machine. Oxford: Oxford University Press, pp. 55-111.

Garfinkel H (1967) Studies in Ethnomethodology. Englewood Cliffs: Prentice-Hall, Inc.

Saha et al

86

Garfinkel H (2002) Ethnomethodology’s Program: Working Out Durkheim’s Aphorism. Lanham: Rowman &
Littlefield Publishers, Inc.

Garfinkel H (2007) Lebenswelt origins of the sciences: Working out Durkheim’s aphorism. Human studies
30(1): 9-56.

Garfinkel H (2022) Harold Garfinkel: Studies of Work in the Sciences. London: Routledge.

Holton R and Boyd R (2021) ‘Where are the people? What are they doing? Why are they doing it?’(Mindell)
Situating artificial intelligence within a socio-technical framework. Journal of Sociology 57(2): 179-195.

Jaton F (2020) The Constitution of Algorithms: Ground-Truthing, Programming, Formulating. Cambridge: The
MIT Press.

Jones-Imhotep E (2020) The ghost factories: histories of automata and artificial life. History and Technology
36(1): 3-29.

Kirksey E, Hannah D, Lotterman C and Moore LJ (2021) The Xenopus pregnancy test. In: Rogers HS, Halpern
MK, Hannah D and de Ridder-Vignone K (eds) Routledge Handbook of Art, Science, and Technology Studies,
pp. 163-178.

Lee F (2020) Enacting the Pandemic: Analyzing Agency, Opacity, and Power in Algorithmic Assemblages.
Science & Technology Studies 34(1): 65-90.

Lippert I and Mewes JS (2021) Data, Methods and Writing: Methodographies of STS Ethnographic Collabora-
tion in Practice. Science & Technology Studies 34(3): 2-16.

Livingston E (1986) The Ethnomethodological Foundations of Mathematics. London: Routledge & Kegan Paul
plc.

Livingston E (1995a) An anthropology of reading. Bloomington: Indiana University Press.

Livingston E (1995b) The idiosyncratic specificity of the methods of physical experimentation. The Australian
and New Zealand Journal of Sociology 31(3): 1-22.

Lynch M, Livingston E and Garfinkel H (1983) Temporal order in laboratory work. In: Knorr-Cetina KD and
Mulkay M (eds) Science observed: Perspectives on the social study of science, pp. 205–238.

Lynch M and Lindwall O (eds) (forthcoming) Instructed and Instructive Actions. Routledge.

Mackenzie A (2017) Machine learners: Archaeology of a data practice. Cambridge: The MIT Press.

Mair M, Brooker P, Dutton W, and Sormani P (2021) Just what are we doing when we’re describing AI? Harvey
Sacks, the commentator machine, and the descriptive politics of the new artificial intelligence. Qualitative
Research 21(3): 341-359.

Petzold C (2008) The annotated Turing: a guided tour through Alan Turing’s historic paper on computability and
the Turing machine. Indianapolis: Wiley Publishing.

Piccinini G (2003) Alan Turing and the Mathematical Objection. Minds and Machines 13(1): 23-48.

Rieder B (2020) Engines of order: A mechanology of algorithmic techniques. Amsterdam: Amsterdam Univer-
sity Press.

Seaver N (2019) Knowing Algorithms. In: Vertesi J and Ribes D (eds) digitalSTS: A Field Guide for Science &
Technology Studies. Princeton: Princeton University Press, pp. 412-422.

Shanker SG (1987) Wittgenstein versus Turing on the nature of Church’s thesis. Notre Dame Journal of Formal
Logic 28(4): 615-649.

Shanker S (1995) Turing and the Origins of AI. Philosophia Mathematica 3(1): 52-85.

Shanker SG (2002) Wittgenstein’s remarks on the foundations of AI. New York: Routledge.

Science & Technology Studies 37(2)

