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Abstract
As part of ongoing research bridging ethnomethodology and computer science, in this article we offer 
an alternate reading of Alan Turing’s 1936 paper, “On Computable Numbers”. Following through Turing’s 
machinic respecification of computation, we hope to contribute to a deflationary position on AI by 
showing that the activities attributed to AIs are achieved in the course of methodic hands-on work with 
computational systems and not in isolation by them. Turing’s major innovation was a demonstration 
that mathematical and logical operations could be broken down into elementary, mechanically 
executable operations, devoid of intellectual content. Drawing out lessons from a re-enactment of 
Turing’s methods as a means of reflecting on contemporary artificial intelligence (AI), including the 
way those methods disappear into the technology, we will suggest the interesting question raised in 
“On Computable Numbers” is less about the possibilities of designing machines that “can think” (cf. 
Turing, 1950), but the practical work we do, and which is made possible, when we ourselves set out to 
think like machines.
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Introduction  
The foundations of Turing’s ‘thinking machines’ 
(Turing, 1950)—and by extension the aspira-
tional research programme(s) of ‘artificial intel-
ligence’ (AI) and core assumptions about the 
computational character of ‘intelligence’ that AI 

mobilises—are built upon Turing’s earlier work 
on computability and Turing Machines (Turing, 
1936). In this paper we want to examine the over-
looked praxeology of Turing Machines (TMs) as an 
imagined—and widely claimed—precursor for AI. 
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By attempting to create a simple TM as part of a 
course of “technical self-instruction” (Sormani, 
2016), we reveal how instructions come to consti-
tute machines that do things ‘on their own’—and 
in doing so advance an ethnomethodologically-
informed corrective to what we think are linger-
ing reifications of ‘machine autonomy’ in AI. Our 
core argument is that the circumstances in which 
machines are brought off as ‘autonomous’, as 
demonstrating ‘artificial intelligence’, can be 
traced back to the same kinds of underexamined 
practical work revealed when we attempt to piece 
together TMs for ourselves: familiar activities to 
any Computer Science undergraduate, but largely 
unremarked in any explicit fashion by Turing him-
self and others since. 

  Partnered with what we could call Turing’s 
‘disappearing act’—the dematerialisation 
of the practical construction of TMs into the 
TMs themselves—is a conflation of human 
computation with machine computation as a way 
of conceiving of the machine in the first place1. 
This starts with Turing’s original focus, namely, 
human computers doing computations, being 
seamlessly transformed into machines doing 
computations in what are presented as equivalent 
ways. That originating conflation is stubborn 
and has underpinned misunderstandings about 
the capabilities of machines and humans in 
discussions of AI ever since (cf. Collins, 1990; 
Brooker et al., 2019a). What we seek to provide 
here is a praxeologically-oriented corrective to 
that conflation, a corrective which at the same 
time will make Turing’s work visible again. We 
will do so via an account of ‘getting the TM to 
compute’, which displays just how machine 
computation rests on human activity (e.g., on the 
production and delivery of machine instructions), 
in every case, at all points. Though these machines 
can be used to do profoundly impressive things, 
they do not set up or operate themselves, and 
focussing on the practicalities of what must be 
done (by people) to get the machines to work 
affords some clarity to a set of fields where 
distortingly inflationary discourses can tend to 
prevail (cf. Elish and boyd, 2018; Brooker et al., 
2019a; Campolo and Crawford, 2020; Mair et al., 
2021). 

 

Modern computational technologies are, 
of course, far more sophisticated than Turing’s 
original examples, but, as with Turing’s machines, 
we will continue to misunderstand their capa-
bilities if we insist on recasting them as somehow 
either directly mirroring human practices or as 
working ‘on their own’ (cf. Suchman, 2006; Holton 
and Boyd, 2021). While many regard attempts to 
define AI as a fools’ errand—part of the phenom-
enon not a means of bringing it into view (e.g., 
Seaver, 2019) —we believe the only serious means 
of addressing AI is to get a more precise handle 
on what these technologies do and how. This is 
why we use this paper to develop an “alternate” 
(Garfinkel, 2002: 72-73) reading of Turing’s 1936 
paper, “On Computable Numbers, with an Appli-
cation to the Entscheidungsproblem”, a return to 
Turing that helps us recover what is involved in 
building a machine that, allegedly, and at its most 
foundational level, ‘does things for itself’. 

  More specifically, by drawing out lessons 
from a re-enactment of Turing’s methods as a 
site which opens up the praxeological “founda-
tions” of AI in under-appreciated ways (Lynch et 
al., 1983: 208; Garfinkel 2022: 182), we will suggest 
the interesting question raised in “On Comput-
able Numbers” is less about the possibilities of 
designing machines that “can think” (Turing, 
1950), but the practical work we do, and which is 
made possible, when we ourselves set out to think 
like machines, i.e., when we are devising instruc-
tions and frameworks for instructing machines to 
performs tasks such as calculating. 

Turing’s contribution in “On Computable 
Numbers”—an imaginative as well as formal one 
that cut across logic, mathematics, engineering, 
philosophy and psychology—was a demonstra-
tion that mathematical and logical operations 
could be broken down into elementary, mechani-
cally executable operations that are devoid of 
intellectual content and can be implemented 
without understanding. If we follow Turing’s 
computational methods, these are operations 
which can be carried out by machines; Turing 
Machines, as they have since come to be known. 
Indeed, by respecifying the doing of math-
ematics and logic in the particular ways that he 
did, i.e., as strings of elementary non-intellec-
tual processes, Turing showed machines could 
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be constructed which could in principle carry 
out any operation capable of being computed 
whatsoever2, depending only on the ingenuity, 
accuracy and precision of the instructions they 
were supplied with, becoming in the process what 
he termed “universal machines” (Turing, 1936: 242; 
Turing, 2005[1945]: 371-372), conceptual coun-
terparts to contemporary digital computers (see, 
e.g., Piccinini, 2003: 28). The question remains, 
however, as to how instructions for such machines 
are to be formulated in any actual case. In 
dialogue with a growing literature on data, algo-
rithms, automation, machine learning, artificial 
intelligence and programming (e.g., Agar, 2003, 
2017; Benbouzid, 2019; Brock, 2016; Brooker et al., 
2019b; Burrell, 2016; Burrell and Fourcade, 2021; 
Elish and boyd, 2018; Fazi, 2016, 2018; Jaton, 2020; 
Lee, 2020; Mackenzie, 2017; Rieder, 2020; Seaver, 
2019; Smith, 2019; Ziewitz, 2016), we seek to open 
up features of the work involved; work which 
cannot be recovered from the machine through 
cognitive analogies or models of thought or mind, 
but only by attending to the practical activities 
through which it is accomplished (Lynch et al., 
1983; Garfinkel, 2022). Based on our re-enactment 
of the work of instruction in Turing’s paper as a 
“tutorial problem” (Garfinkel, 2002: 145), we argue 
that acquainting ourselves with ways of thinking 
with and through the kinds of methods found 
in Turing’s work helps us recover the computa-
tional foundations of AI via an understanding of 
the practices involved in its achievement. Seen 
thus, as we shall argue in conclusion, AI, as “engi-
neered design” (Garfinkel, 2002: 268), emerges as 
a reproducibly instructable phenomenon (Lynch 
and Lindwall, forthcoming). Following Turing’s 
machinic respecification of computation through 
and clarifying its grounds, we hope to contribute 
to a more consistently deflationary position on 
AI, dispelling AI’s “magic” (Elish and boyd, 2017; 
Campolo and Crawford, 2020) and defusing its 
“drama” (Ziewitz, 2016) by showing the activi-
ties attributed to AIs are achieved in the course 
of methodic hands-on work with computational 
systems and not exclusively by them.  If we are 
to recover the work practices through which AI 
systems are crafted, however, we need to be alive 
to the ways in which those practices are made to 
disappear into those systems once built. Under-
standing how Turing first formalised that ‘disap-

pearing act’, we argue, provides important lessons 
for anyone seeking to unpick its contemporary 
equivalents in the field of AI, something we tease 
out in the discussion with reference to AlphaGo 
and its successor algorithms but which is an issue 
with broader relevance still.

Conceptualising computation: 
two ways of thinking 
about Turing’s work
 Whether or not Turing’s work had any significant 
bearing on the construction of modern comput-
ers is a contested issue (see, e.g., Sloman, 2002 on 
Turing’s “irrelevance” there). Indeed, Agar (2003, 
2017) has argued, “On Computable Numbers” 
looked less to the future and the digital compu-
ter than back to the general purpose ‘machinery’ 
of government and the bureaucratic reorganisa-
tion of clerical work within it into simplified tasks 
arranged in both serial and parallel orders as part 
of a procedural, we might even say algorithmic, 
division of epistemic labour. Nonetheless, Shan-
ker’s (1995) notes in his reflection on “Comput-
ing Machinery and Intelligence” (Turing, 1950), 
Agar’s (2003) ‘governmental’ reading and ‘Turing 
realists’ like Sloman share common ground. All 
agree Turing’s early work (a) did influence those 
involved in building the first generation of com-
puters, such as von Neumann, by offering them 
an initial logical model (see Gandy, 1988), and (b) 
retrospectively played a pivotal role in the forma-
tion of AI as a field in the 1950s by figures such as 
McCarthy, McCulloch, Minsky and Simon, as it pro-
vided them with a clear sense of what the phrase 
“Artificial Intelligence” could be taken to mean 
when rendered computationally. In this sense, “On 
Computable Numbers” represents a pivotal move 
because in it Turing effects a logical refutation of 
the proposal that computation could be treated 
as part of analytic philosophy, i.e., as aprioristic, 
deductive and strictly logically derived. In refuting 
that proposal, he instead relocated computation 
to a domain of practical, empirical, trial and error 
work – computing, in the active sense – involving 
the construction of devices for stabilising and test-
ing computability as a contingent matter (cf. Fazi, 
2018). The paper crucially, therefore, worked as a 
ground clearing exercise that helped establish 
space for subsequent developments in comput-
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ing and what would come to be called AI. Central 
to Turing’s contribution in this regard as the earli-
est published breakthrough in formulating poten-
tial bases for specifying ‘machine intelligence’ 
were what Shanker terms his “two questions”: “the 
philosophical question …: Can machines think? … 
and the psychological question: Do thinkers com-
pute?” (Shanker, 1995: 52). For Shanker (1995), 

 
These two questions belong to very different 
traditions. The former was a central concern 
of English mathematicians in the nineteenth 
century (e.g., Babbage, Jevons and Marquand); 
the latter a mainstay of empiricist psychology in 
Germany, England, and America. But Turing not 
only regarded these two questions as intimately 
connected: in fact, he thought they were internally 
related—that in answering one you would ipso 
facto be answering the other. The result was a 
remarkable synthesis. (p. 53) 
 

This intended synthesis had many strands and 
we do not have space to fully set out Shanker’s 
detailed examination of them here, though we 
would encourage readers to consult Shanker’s 
work for themselves (e.g., 1987, 1995, 2002). How-
ever, we do want to offer an outline of one aspect 
of Turing’s work in “On Computable Numbers” as 
part of rethinking how we might approach the 
second question in particular. 

 That said, offering an easily-digestible exegesis 
of even a small part “On Computable Numbers” is 
a far from straightforward task. For one thing, ten 
of its eleven sections plus the introduction and 
the 1937 appendix are given over almost entirely 
to working through what for lay readers are formi-
dably complex problems of mathematical logic—
without the requisite background in mathematics 
and mathematical logic, a background which 
Turing could reasonably assume his contempo-
rary readers had, these sections are opaque to say 
the least (though see Petzold, 2008 for a helpful 
line-by-line discussion as well as, e.g., Agar, 2003, 
2017, Fazi, 2016, 2018 and Gandy, 1988 for more 
wide-ranging and differently oriented accounts). 
For another, the work Turing does within the 
paper is transgressive; grounded in mathematical 
logic but crossing into philosophy, speculative 
engineering and psychology in an idiosyncratic 
fashion. Nonetheless, despite—indeed, because 
of—these difficulties, the paper contains valuable 

lessons. It occupies an important place in Turing’s 
intellectual programme because it is there where 
Turing formalises his respecification of compu-
tation with reference to the activities of human 
computers, that is, individuals undertaking the 
work of calculation. This is part of the framing of 
the paper in §1— “We may compare a man in the 
process of computing a real number to a machine” 
(1936: 231)—and the focus of §9, more specifically 
Turing’s “appeal to intuition” (1936: 249), which 
elaborates on the basis of that comparison. It is 
from there, following Shanker, that we take the 
argument up.  

 The first point to note is that during the time 
Turing was writing his 1936 paper, (i.e., prior to the 
introduction of machines to do the work), human 
computers were employed in government and 
industry to perform long and time-consuming 
mathematical operations based on instructions 
issued to them (see Agar, 2006). In a context where 
calculative operations had already been rendered 
increasingly ‘mindless’ through an atomising 
clerical division of labour driven by large corpo-
rations and governments over decades if not a 
century or more (Agar, 2003, 2017)3, Turing sought 
to reduce their work even further to its behavioural 
minima. In Turing’s analysis, while the outcomes of 
that work could be highly sophisticated, the indi-
vidual tasks these human computers performed 
seemed simple and did not appear to have to be 
treated as involving any deep, complex mathe-
matical reasoning beyond writing down symbols 
one after another according to a prescribed series 
of steps accessed by looking up input tables and 
logbooks. As Shanker puts it, Turing was reim-
agining a typical human computer “performing 
the most routine of calculating tasks in order to 
… break calculation down into its elementary … 
units” (1995: 74). As those units, those behavioural 
minima, could be shown to be “devoid of intelli-
gence” and mechanistic in their operations, Turing 
notes we “may now construct a machine to do the 
work of this computer” (Turing, 1936: 251). Such 
machines came to be dubbed “Turing Machines” 
and proved influential as Turing showed that they 
could be used for computation on a formal and 
thus provably rigorous, logical and mathematical 
basis. With this machinic respecification of the 
problem of computability in hand, Turing could 
argue that “the machine’s ‘behaviour’ … satisfies 
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our criteria for saying that it is ‘calculating’ because 
its internal operations are isomorphic with those 
guiding the human computer” (Shanker, 1995: 
80). The equivalence is established on this basis: 
bracketing the material and situational differences 
between them, machines can be said to be calcu-
lating, on Turing’s analysis, because they are doing 
what human computers do when they ‘compute’, 
i.e., working through ‘recursive functions’, algo-
rithmic chains of elementary operations; and 
when human computers calculate they are doing 
what computing machines do, i.e., working 
through the same recursive algorithmic functions 
composed of simple steps albeit at the time in 
lengthier and more complex combinations. In 
Davis’s (1978) summary, 

Turing based his precise definition of computation 
on an analysis of what a human being actually does 
when he computes. Such a person is following 
a set of rules which must be carried out in a 
completely mechanical manner. Ingenuity may 
well be involved in setting up these rules so that 
a computation may be carried out efficiently, but 
once the rules are laid down, they must be carried 
out in a mercilessly exact way. (as cited in Shanker, 
1995: 73) 

In Turing’s work, exactly the same parameters 
were to be applied to computing machines as to 
human computers because their operations were 
designed to “include all those which are used in 
the computation of a number [by the former]” 
(1936: 118; see also Gandy, 1988; Piccinini, 2003; 
Sieg, 2009).  

  Shanker goes on to critically deconstruct 
Turing’s account with respect to the drawing of 
that equivalence, “question[ing] the whole basis 
of Turing’s interpretation of the logical relation in 
which algorithms stand to inferring, reasoning, 
calculating, and thinking” (1995: 81-82). He does 
so, with reference to Wittgenstein, by showing 
that our practices of calculation are not the same 
as the operations of the computing machine 
(see also Collins, 1990 for related arguments). 
Shanker’s response to Turing’s second question 
is consequently a negative one: humans do 
not compute in the same terms machines do. 
However, while we endorse Shanker’s analysis, 
we want to take the discussion in a somewhat 
different direction, picking up on matters 

Shanker and others have left unremarked. Those 
matters are foreshadowed in Davis’s gloss above, 
“Ingenuity may well be involved in setting up 
… rules so that a computation may be carried 
out …” and take us to Turing’s stated objective 
of “construct[ing] a machine to do the work of 
… [a] computer” (again, as cited in Shanker, 
1995: 73) and not just one capable of handling 
single computations but whole classes of them 
– Turing’s “universal computing machine” (1936: 
241). Just what is this ingenuity and just how 
is to be embodied in the construction of such 
a machine? Insofar as Turing is presenting a 
conceptual blueprint for that machine and was 
thus himself engaged in computing work, what was 
he doing and how? Finally, how might that work 
be recovered from Turing’s published accounts of 
it? 

Just as with the work of the human computer it 
is said to derive from, the work of the machine as it 
computes is entirely unlike the (human) work that 
goes into setting it up to do so. Yet while distinct, 
in this case the two are intertwined. Indeed, and 
in an important sense, ‘the machine’, such as it is, 
can be seen as being constituted by its tables of 
instructions and thus the work that has gone into 
formulating them (Turing, 1936: 243). Here then, 
contra Shanker, we do have an internal relation. 
However, when we start to look within Turing’s 
paper for the work of devising those instructions, 
of thinking in mechanical terms about computa-
tion for the purposes of building an instructed 
and instructable machine, we find we can locate 
the machine easily enough but the instructive 
work that constitutes it proves much more elusive. 

  In his later 1945 report on the construction 
of the Automatic Computing Engine or ACE, 
Proposed Electronic Calculator (reproduced in 
Copeland, 2005), Turing (2005) notes 

It is evident that if the machine is to do all that 
is done by the normal human operator it must 
be provided with the analogues of three things, 
viz. firstly, the computing paper on which the 
computer writes down his results and his rough 
workings; secondly, the instructions as to what 
processes are to be applied; … thirdly, the function 
tables used by the computer must be available in 
appropriate form to the machine. (p. 371, emphasis 
added) 
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He (Turing, 2005) goes on: 
 
It is intended that the setting up of the machine 
for new problems shall be virtually only a matter 
of paper work. Besides the paper work nothing will 
have to be done except to prepare a pack of … 
[punch] cards in accordance with this paperwork, 
and to pass them through a card reader connected 
with the machine. There will positively be no 
internal alterations to be made even if we wish 
suddenly to switch from calculating the energy 
levels of the neon atom to the enumeration of 
groups of order 720. It may appear somewhat 
puzzling that this can be done. How can one expect 
a machine to do all this multitudinous variety of 
things? The answer is that we should consider the 
machine as doing something quite simple, namely 
carrying out orders given to it in a standard form 
which it is able to understand. (p. 372, emphasis 
again added) 

 
The phrases “instructions as to what processes are 
to be applied … available in appropriate form”/ 
“orders given … in a standard form” make it clear 
that Turing was seeking to devise a framework—
a set of reproducible methods—for working 
through the instructions these machines were 
to be given as the basis of that “standard form”. 
Turing’s machines could do all manner of things if 
instructed in the right way but, as we can see, that 
hinged on working out the instructions, exercising 
the “ingenuity” Davis points to along the way. Put 
differently, there is lots of relevant action—i.e., the 
careful design of instructions that can be supplied 
to and carried out by a machine, yet which will 
have some meaningful purpose resulting from 
their execution (i.e., will be able to be made sense 
of and thus made relevant in a specific social con-
text)—bracketed off here as “only a matter of 
paper work”. Yet nowhere is it made clear just how 
that “paper work” is to be done. While this unspec-
ified set of activities is almost entirely glossed over 
by Turing, we argue it sits at the foundations of AI 
then and now, foundations we attempt to exca-
vate praxeologically in what follows. 

Human-machine asymmetries as a tutorial 
problem 
As we have begun to explore in a preliminary 
way above, it is not exactly the case that Turing’s 

model treats humans and machines as engaged 
in the same activities—the very articulation of the 
mechanisms of a Turing Machine by Turing him-
self shows us otherwise. There is, instead, a ‘pair-
ing’ here, i.e., the framing of the instructions and 
the instructed operations of the machine, but they 
are not reducible to one another, and their inter-
nal relations are alternately asymmetric as Garfin-
kel (2002: 114) puts it. That is, it is possible to get 
from the first to the second (indeed the instruc-
tions, which are often materially encoded in the 
case of digital computers, define ‘the machine’) —
but not the other way round. Reading Turing’s 1936 
paper, however, as we have noted above, provides 
little sense of how he constructed the machine at 
least explicitly4. Nor can the work which went into 
figuring out those instructions and putting them 
into a “standard form” be recovered by looking at 
the inputs and outputs of the machine alone. The 
practical work of “making a universal machine” 
(Jaton, 2020: 103) is thus missing from the picture, 
and while that is not problematic for all purposes, 
it does highlight a praxeological gap for those 
seeking to understand ‘autonomous’ machines 
more generally, not least because a consideration 
of Turing’s own methods shows us the two cannot 
be meaningfully separated out.  

One way to recover Turing’s prototype methods 
could be via a detailed examination of “On 
Computable Numbers”, working through what 
Turing was doing in its successive stages as part 
of a critical textual hermeneutics of computation 
(cf. Fazi, 2018). However, following Garfinkel’s 
later work (e.g., 2002, 2022) and the example of 
studies by the likes of Livingston (1986), Bjelić 
(1996), Sormani (2016), Sharrock and Ikeya (2000), 
and others (e.g., Brooker and Mair, 2022), we want 
to instead proceed somewhat differently and 
“misread” Turing’s 1936 paper, treating it not as 
an established logico-mathematical proof but an 
instructional guide for “construct[ing] a [Turing] 
machine” that we ourselves can attempt to follow 
as part of a course of “technical self-instruction” 
(Sormani, 2016: 102-136) in the foundations of 
AI. In this, the text of the paper furnishes “clues” 
(Bjelić, 2003: 133-136). While we would certainly 
not suggest Turing’s methods are the only way 
of constructing them, our misreading provides 
an occasion for a pedagogic tutorial in the work 
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of making ‘computing machines’ via a consid-
eration of their instructed character. Through 
that tutorial, we want to consider the lessons 
that might be learned from gaining a first-hand 
appreciation of their constitution. In this case we 
will use different diagrams as part of a re-enact-
ment designed to demonstrate the workings of a 
paper TM assembled from scratch for a particular 
computational purpose. These diagrams are not 
part of Turing’s paper but intended as pedagogical 
devices to guide readers through the machinery 
of TMs and make them instructably observable, 
in Garfinkel’s phrase (2002: 136), in relation to the 
specific courses of specific action and reasoning 
that machinery is coupled to. It is with this in mind 
that we invite readers to draw out their own TM, 
as per the instructions below, and follow along 
with the operation of those instructions to see 
the praxeological sense they have first-hand. For 
those who might benefit from a further talk-
through of our TM, see Clip 1 below. Voiced by a 
machinic narrator, the choppy, robotic delivery is 
fitting given our subject matter. 

Our approach here is novel in the sense that 
most analyses of Turing’s work take up its implica-
tions for two domains. On the one hand, its impli-
cations for philosophy, logic, mathematics and 
formal theories of computation and AI (as in, e.g., 

Fazi’s (2018) work); and on the other hand, for the 
practical construction of digital computers and 
‘artificially intelligent’ systems and the economic, 
social, political and cultural developments, 
positive and negative, both have shaped but have 
also been shaped by (as in, e.g., Agar’s 2003, 2017 
work). As a result, Turing’s machinic respecifica-
tion of ‘intelligence’ as a practically reproducible 
matter of computational engineering, has not 
been traced through in relation to the situated 
courses of methodic work in and through which 
Turing developed it. This ‘missing’ element in treat-
ments of Turing’s work, how it might be opened 
up and what it might reveal is something we came 
to notice on the basis of reading Turing alongside 
prior ethnomethodological studies of scientific 
and technical practice, including Ziewitz’s (2017) 
“experiments with the ethnomethods of the 
algorithm”. In circumstances where the original 
courses of practical activity being explored are 
inaccessible, as is the case in relation to Galileo’s 
demonstrations (Garfinkel, 2002; Bjelić, 1996, 
2003; Livingston, 1995b) or Goethe’s experiments 
with colour (Bjelic and Lynch, 1992), through 
re-enactments of demonstrations and experi-
ments, ethnomethodologists have sought to 
make at least some of the contingent specifici-
ties of the practices involved available again, “for 

Clip 1. Video: “A machinic talk-through of a Turing Machine”. This video is available at: https://www.youtube.com/
watch?v=Ln_WC9pARoE
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another next first time” (Garfinkel, 2002: 98, 216). 
Since re-enactments are by their nature subject 
matter specific, this study is, thus, a contribution 
to, rather than an application of, a growing body 
of work in ethnomethodology that mobilises 
re-enactments in engagements with science 
and technology. At the same time, it is also a 
contribution to debates about diversifying meth-
odological repertoires within STS (Lippert and 
Mewes, 2021; Silvast and Virtanen, 2023). On the 
latter, ethnomethodological re-enactments can 
profitably be read alongside related work being 
developed in other areas of STS (see, e.g., Kirksey 
et al., 2021). While the ethnomethodological 
character of studies such as ours is distinctive, 
we also view such studies as sites for productive 
dialogue in STS, as our own engagement with the 
work of Agar, Jaton, Fazi and others goes some 
way to demonstrating.  

Re-enacting Turing: “On 
Computable Numbers” as a site 
of technical self-instruction
An important initial question for any such endeav-
our, as Bjelić notes (2003: 133), is; where to start? 

Before we could begin to construct our own TM, 
our initial engagement with Turing’s text made 
it clear we needed to familiarise ourselves with 
its constituents. Consulting Turing’s ‘recipe’, we 
learned a TM should be imagined consisting of 
three or four central components, all of which 
draw upon an assumed familiarity with objects 
such as magnetic tape recorders or punched card 
readers, key technologies of Turing’s day. First, a 
‘tape’ which is divided into equal-sized blocks 
where each block can contain a single symbol at 
most (see Figure 1). Second, a ‘head’ or a scanner 
which can move either left or right to scan the 
symbols written on the tape, with the machine 
also having the capacity to erase an existing sym-
bol or write a new symbol on the tape. At any 
given time, Turing tells us, the machine is in a par-
ticular ‘state’—therefore, a means of recording 
and identifying the current ‘state’ of the machine 
is required too. That identifiable machine ‘state’, 
i.e., what at any moment it is set up to do, is the 
third component of a TM. Based on the state and 
the symbol currently being scanned, a TM deter-
mines which instruction is to be carried out next. 
These instructions are to be represented in a 
table-like format (see Figure 1) akin to the tables 
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human computers would follow. This ‘instruction 
table’—Turing calls them ‘configuration tables’ 
because they constitute structural arrangements 
of the machine—is the fourth and final compo-
nent of a TM. While the third and fourth com-
ponents can be combined, it made sense to us 
to keep them separate as it allowed us to more 
easily track and make explicit the logic of the 
machine’s parts in terms of their respective func-
tions, particularly important given our machine 
was to be used as a demonstration device. Mov-
ing from the formal recipe to a working version 
of the diagrammed schematic depicted in Figure 
1 helped us in that regard but it remained a pre-
liminary step. We still needed to work through a 
set of operations which would enable us to both 
explore and elaborate how we could animate the 
machinery, putting it to computational work, and 
for that we needed a concrete application, some-
thing the TM could process and in as clearly fol-
lowable a form as possible. 

For our present purposes, we decided to take 
a simple arithmetic operation as our “tutorial 
problem” (Garfinkel, 2002: 145) so we set out to 
build a TM based on our schematic that could 
check if a number is divisible by three. The first 
issue we faced was this: how would we use the 
“engineered design” (Garfinkel, 2002: 268) Turing 
bequeathed us and which we had just famil-
iarised ourselves with to determine divisibility 
by three? We needed something that could be 
sequentially processed through elementary non-
intellectual steps and which could operate in line 
with the components listed above. We thus had 
to formalise the problem. We settled on finding 
the remainder left when we divide a number by 
three as it allowed us to introduce a binary logic 
to the machine’s operations. That is, if the machine 
indicated that a remainder was zero, we could 
then conclude the number was divisible by three. 
If the machine gave us back any number other 
than zero, we could conclude the reverse. This 
way of finding remainders is called a ‘modulo 
operation’ in computing. While modulo operations 
can be performed with any two numbers, to keep 
our TM as simple as possible we restricted the 
divisor to 3. However, the dividend in this case had 
to be extended to any possible natural number if 
our TM was to do its projected job. In setting the 

TM up, we were, then, directing it to work through 
how many times the divisor would go into the 
dividend—whatever number that might happen 
to be—and we were to call that number the 
quotient, and whatever was left over we were to 
call the remainder. For example, if we divide 7 by 
3, we get 2 as the quotient (as 3 goes twice into 7) 
and 1 as the remainder (7−(3∗2)=7−6=1 ). If 
we were able to set our TM up effectively, it should 
indicate the remainder is not zero in this case, 
enabling us to conclude that 7 is not divisible by 3.

From many examples like this one, we can 
derive the following formalisation/formula: 

remainder=dividend – (divisor∗quotient )

It was this formula we generalised into a method 
for finding remainders that we wanted to imple-
ment using a TM. To simplify our local specifi-
cation of Turing’s design further, reducing the 
parameters of the problem operationally, we real-
ised we should restrict the symbols on our TM’s 
input tape to 0, 1, 2 and ‘blank’—for ‘do nothing 
else’ or ‘halt’—as the only symbols which could 
be scanned, thus limiting the number of instruc-
tions we would have to write for it. On top of this, 
informed by the way digital electronics offers sim-
pler implementation for binary systems, we would 
opt to use binary numbers to represent the divi-
dend as part of reducing the number of symbols 
required to represent it. If we were to opt instead 
for the decimal system, we would need a set of 10 
symbols (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) and a much 
more complex set of accompanying instructions 
by extension. Using the binary system to codify 
the dividend, by contrast, meant we would only 
need to use two symbols (0 and 1) to represent 
any natural number. This would also reduce the 
number of configurations required to perform 
the computation. These choices had a neat sym-
metry: our TM would only need to be able to read 
and write 0, 1 and 2 as we could use 0 and 1 to 
represent every possible dividend from a given 
input sequence; and we could also use all three 
of them for our output sequence with 0, 1 and 2 
as the only possible remainders when we divide 
a number by three. The ‘blank’ symbol would be 
there to instruct the TM to stop. Finally, to further 
simplify our TM in comparison to those in Turing’s 
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paper, we disallowed backtracking and instead 
restricted the TM to moves in one direction. That 
is, our TM would not go backwards and forwards 
along the tape selectively, but instead ‘dumbly’ 
proceed through the symbols it was presented 
with one by one in linear sequential order.

 Our strategy from there in implementing this 
‘solution’, as such things are called, was to start 
at the simplest possible point, at first working 
on and testing instructions we’d need to set out 
for checking the three-divisibility of an ‘easy’ 
number that would have 0 as the dividend. Then 
we wanted to gradually increase that number 
with every subsequent step so as to ensure our 
TM would not skip potentially relevant cases and 
help us to see what we would need to do to get 
the TM to handle any number. For each of those 
steps we would write down the tabular instruc-
tions—the machine configuration—required to 
perform the computation in that step, a way of 
“reverse engineering” the computational mecha-
nisms we needed the TM to be built around step-
by-step in parallel with the unfolding logic of 
the solution we were seeking to develop via the 
TM (see Brooker and Mair, 2022). In other words, 

rather than work out the instructions in advance, 
we would specify them as we went along to give us 
the results we expected in relation to the compu-
tational problem at hand (an approach we might 
characterise as central to programming’s work 
more generally). 

Understanding the components and having 
a plan is one thing, however, putting both into 
action another. How to get the TM going? As we 
learnt from Turing, a TM can be started with an 
input string—a sequence of symbols written 
somewhere on the tape—as long as we specify 
all the states at which the machine can start 
scanning that input string. However, the machine 
can only have a finite number of states so some 
of these states need to be denoted as ‘START’ 
states. Similarly, we also needed ‘END’ states to 
instruct the machine when to halt its operations 
i.e., at the end of computation. In any given state, 
a TM can find any possible symbol accepted by 
the machine, and thus, we needed to write all the 
possible combinations of states and symbols in 
the instruction table so as to avoid our TM encoun-
tering trouble in the form of missing instructions. 
This way a TM instructably moves from a START 
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state to an END state to perform a given computa-
tion.  

 With all that covered and retracing the ground 
of our re-enactment, let us start by checking 
the three-divisibility of 0: as 3 is not contained 
within 0, both the quotient and the remainder 
(0−(3∗0)=0) are 0 in this case. The binary 
representation of 0 is also 0 and we write it down 
on the tape (see Figure 2). So, in this case, at the 
beginning of the computation, the TM will find 0 
on the tape. Following Turing’s instructions more 
or less, this is the ‘START’ state of the machine and 
we represent it as ‘A’. So, the current symbol at the 
current state ‘A’ is 0. When the machine is in this 
situation, we instruct it to remain in state A and 
move the scanner to the right. We write down this 
instruction under the ‘RULE’ column of our instruc-
tion table. At this stage, our instruction table looks 
like Figure 2. 

As instructed, the TM’s scanner moves to the 
next block, and it finds a ‘blank’, an empty block 
that does not contain any symbol (see Figure 2). 

So, currently the state is A, and the symbol is blank. 
In this case we already know that the remainder 
should be 0. So, we instruct the machine to write 
down the output 0 at the current empty block and 
halt the computation (Figure 3). This particular 
state where the TM halts its operations is one ‘END’ 
state of the machine. This way for input 0, we can 
find the correct output 0 as the remainder, with 
zero being divisible by any integer.

Next, we move from considering the three-
divisibility of 0 to considering that of 1, which is 
01 in binary. So, instead of a blank, imagine that 
our scanner encounters a 1 in its place in the last 
step (i.e., the sequence becomes 01 (see Figure 
4)). However, in this case, the machine needs to 
be moved into a new state because our instruc-
tion table does not yet contain any instructions 
to address the case when the remainder is 1 (
1−(3∗0)=1 ). We will call this state ‘B’.  

  As instructed, the TM will move its scanner 
to the next block, and it will find another blank 
there. Where the current symbol is a ‘blank’ and 
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the current state is ‘B’ (see Figure 5) we have a 
new situation for our machine, and it needs to 
be represented in the configuration table. As 
we know the remainder in this case is 1, we will 
instruct the machine to write 1 before halting its 
operations as per the updated instruction table 

n Figure 5.  In terms of how we progressively 
built our learning into the instructions we were 
developing as we moved along, because we 
were representing our dividend in binary, at 
the beginning of a computation, i.e., in the TM’s 
START state, our TM could encounter either 0 or 1. 

Figure 5. Three-divisibility of ‘01’
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We had just worked through the situation where 
our TM encountered 0 in its START state (Figure 3) 
and thus, to incorporate that, we also needed to 
add the ‘(A, 1)’ configuration to the table in Figure 
5 as another possible START state. In this way, our 
list of instructions started to grow and feed into 
one another.  

Now, if the sequence did not end there and 
the scanner finds 0 instead of blank in the last 
step, the sequence now becomes 010 (see Figure 
6) which equals 2 in the decimal system. In this 
case, the remainder should be 2 (2−(3∗0)=2 ). 
This is again a new situation, so we again need to 
instruct the machine as to what should be done 
in this case.  

First, following Turing again, we will call this 
state ‘C’. After scanning 0, 1 and 0 respectively, 
as the machine is in state C, if it finds a blank in 
the next block, we need to instruct the machine 
to write 2 as the remainder in this place before 
halting the operation (see Figure 7). This is another 
possible END state where the machine could 
terminate its operations. As even a small number 

of initial cases makes clear, we could continue 
the same kind of procedure for all the subse-
quent numbers, devising instructions for different 
scanned sequences as we go. 

Knowing a priori that mathematically there 
cannot be a remainder larger than two, we now 
anticipate that when applying these instructions 
to numbers larger than two we will see a pattern 
in the output where 0, 1 and 2 keep appearing as 
outputs in an orderly manner as we add digits at 
the end of our sequence. It is also notable that we 
have developed three categories of states to deal 
with three-divisibility through the step-by-step 
work we outlined above. We capture this pattern 
in our final instruction table (see Figure 8) where 
all the potential outcomes are accounted for and 
it is in that way that we determine whether it is 
possible to find the remainder when we divide a 
number by 3 using our TM. We can therefore now 
test our TM with a binary sequence like 1001 to find 
out if it can correctly find the remainder and check 
if our intuition about the pattern in our sequences 
is correct. 1001 equals 9 and the remainder in this 
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case is 0. If we follow the instruction table in the 
following order, the machine will eventually write 
0 as output. We again invite readers to verify our 
TM’s instruction table by working through their 
own test inputs at this point. 

The diagrammed demonstrations above prove 
that the instruction table we have devised works 
for any possible natural number: this TM can solve 
not just a problem but a “class of problems” (Living-
ston, 1995a: 113). Our solution thus constitutes an 
‘effective procedure’, i.e., a mathematically sound 
algorithm, because it is a generalised solution 
to the computational problem we set ourselves 

where the solution is reached by following a finite 
set of instructions. The process by which we have 
determined divisibility by 3 is effective in these 
terms because it adequately captures elemen-
tary, mechanisable and thus ‘computable’ steps in 
Turing’s sense adequate to undertaking the task 
as specified (i.e., ascertaining the three-divisibility 
of any natural number).

The divisibility problem in our demonstration is 
described in terms of the observable and observed 
constituents of the problem’s arithmetic proper-
ties as they became computationally relevant in 
the context of building our TM; “normal troubles” 
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(Garfinkel, 1967) of getting the machine to work, 
as and when we encountered them. If we were 
to set out to solve this problem using a modern 
programming language like Python or Java, we 
would not have to build a TM at all—indeed, such 
languages are often dubbed ‘high level’ precisely 
because their operations are rarefied far beyond 
the mechanical aspects of transistors switching 
between binary states. However, each time 
programmers write a program to solve a math-
ematical or logical problem like this, regardless of 
their language of choice, they have to engage in a 
process of mapping that problem into processes 
that can be handled within the computational 
systems they are working with, just as we have 
here. The formal possibility of so doing is exactly 
what Turing demonstrated in his paper.   

Discussion 
Turing wanted to make his machines “automatic”, 
dependent only on a set of pre-defined configu-
rations for their operation. These machines run 
“automatically” in the sense that once initialised, 
“external operators” are only needed when the 
computation cannot move forward without fur-
ther inputs from them (Turing, 1936: 232). As a con-
sequence, the role of human workers (allegedly) 
ends in designing and implementing the instruc-
tion table, and once it has been implemented, as 
long as all outcomes have been anticipated and 
are handled accordingly, the machine should be 
able to carry out the instructions in the prescribed 
order. Hence, as we have seen first-hand by vir-
tue of undertaking this exercise, mechanising a 
computational procedure also includes eliminat-
ing the work that went into devising that proce-
dure in the first place. Once it was complete, we 
no longer appeared in the TM’s running, in spite 
of the TM’s operations sense and meaning only 
being furnished by reservoirs of practical, mun-
dane reasoning about problem decomposition 
that we had to engage in, through and as part of 
the TM’s very construction. Our situated courses 
of practical reasoning in assembling our TM were 
progressively ‘enchained’, to adapt a phrase from 
some of Garfinkel’s (2022: 189) recently published 
work, in the TM’s operations.

This leads us back to the computing work 
Turing was doing in the 1936 paper. Seen in a 
praxeological light, Turing’s paper furnishes a 
logico-mathematical or conceptual programme—
a set of methods—for assembling a computing 
machine, with the sections offering instructions 
as to what goes into their assembly and how they 
are to be engineered to execute calculations. We 
showed that this involved putting the opera-
tions of the Turing Machine centre stage while 
backgrounding the methodic work Turing did in 
setting out the instructions it could be capable 
of following. What makes the latter difficult to 
recover—and what necessitated the re-enact-
ment—is the intentional elision of the operations 
of the machine and the methods for instructing it, 
with the latter seemingly written ‘into’ the arrange-
ments of the machine (the sense of which, albeit, 
can only ever be recovered via further practices 
of local reasoning). This is, therefore, a phenom-
enon that consists of two irreducible parts and 
so is ‘paired’ in ways that Garfinkel (2007) as well 
as Livingston (1986) and Bjelić (2003) sought to 
elaborate in their work from the 1970s on. That is, 
we have the formalisation of the computation in 
the form of the TM itself, on the one hand, and the 
practical work of composing the instructions that 
constitute it, on the other, and the two are inextri-
cably linked.  

 In our attempt to solve an arithmetic problem 
using a TM built ‘from scratch’, the computa-
tional work involved became recognisable in and 
through the steps of ordering the instructions to 
it. That is, the solution’s generality became evident 
in the followable character of those constitutive 
instructions from within the process of imple-
menting that solution via the specifics of the TM’s 
engineered design. In the course of that compu-
tational work, when those instructions were 
followed in a ‘mechanical’ fashion, we arrived 
at something that could be worked through as 
a solution to our problem, which in turn proved 
that an effective procedure or algorithm exists 
that solves an entire class of arithmetic problems, 
however limited those problems might have 
been. In other words, the formal construction 
of our abstract machine through the composi-
tion of instructions was what yielded an effective 
procedure or algorithm, albeit an unwieldy one. 
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The formal representation of our efforts—the 
instruction table—does not, however, make the 
situated and contingent character of the work 
that has informed it evident. This is precisely why 
we sought to specify the practices that informed 
the TM’s computational workings. The practical 
‘details’ of our computing work do not have to 
be and are not made explicit in the process of 
achieving such things as formalisation, generali-
sation and reduction, just as they are not made 
explicit in Turing’s (1936) original demonstration. 
In our case, it was the instruction table which 
made our abstract machine ‘automatic’ in Turing’s 
terms, while we found the work of formalisation, 
generalisation and reduction as its “shopfloor 
problem” constituents, i.e., practical problems we 
had to solve to get going with the building of a 
working machine (Garfinkel, 2002). These constit-
uents can only be accessed in and through the 
‘lived work’ of computation, be it on paper while 
building TMs or on screen while writing computer 
programs. In the case of programming, it is the 
computer programs that make those constituents 
recognisable in the work of writing them. As such, 
thinking like a machine emerges as the praxe-
ological supplement to ‘the thinking machine’; 
this ‘thinking machine’, then, is silently supported 
by the wealth of underlying reasoning practices 
and hands-on work by and through which it is 
produced. 

  Turing’s practice shows us, therefore, that 
methods of writing instructions in machine 
executable terms are constitutive of the machines 
so instructed. While we have applied rather than 
rediscovered Turing’s design, our tutorial problem 
has supplied us with important practical lessons 
in that regard. To adapt Bjelić’s (2003) work on 
Galileo to Turing,  

 
When … [Turing] proposed the specifications 
for the … [machine], he unintentionally left a set 
of practical contingencies for … practitioners to 
find and resolve according to the specific local 
conditions of their work … [The] structures and 
their descriptions of the discovery of … [effective 
algorithmic procedures using those machines] are 
available only where the discovery is reproduced. 
(Bjelić, 2003: 135)
 

For instance, our capacity to produce a TM-based 
solution to an arithmetical problem depended on 
such things as: our choice of problem, an elemen-
tary mathematical and hence potentially cultur-
ally more accessible one (including, for instance, 
unstated assumptions around the significance and 
utility of operations such as determining divisibil-
ity); the formatting of inputs to the device as part 
of the ‘language of instruction’; and the way in 
which we built the TM around (and in line with) 
equally elementary computational steps under-
taken in a sequence which we established as we 
worked through it. Major issues Turing’s paper did 
not help us settle but which we had to resolve by 
‘best guess’ included: just how many components 
can be said to be minimally involved in the con-
struction of a TM, three or four, and what might 
formalising that either way make visible? And how 
does ‘the tape’ being scanned come to us? Are 
numbers already printed or are we to conceive 
of ourselves as writing it as we go for demonstra-
tion and testing purposes? The way we developed 
our procedure, the latter was more accurate even 
though that meant the TM could ultimately han-
dle the former too. Our TM calculates remainders 
as part of mechanically determining divisibility by 
3; it does so ‘on its own’, but we now have a much 
better sense of how this ‘on its own’ is foundation-
ally reliant upon a scaffold of elided, reasoned 
activities. What we have come to see, by virtue of 
our course of instruction in the TM’s specific mode 
of operation, is that the relation and categorical 
shift between humans and machines is something 
we are diverted from seeing—no different to the 
case for many new AIs—not because we lack an 
understanding of intelligence, the brain or mind 
but because of the very practices through which 
computing machines are produced.  

 Now, our TM does things for sure, but not in 
the ways we ordinarily do nor even in the ways we 
specifically did in working its design through; it 
runs its operations on binary, for example, and we 
worked them out that way, but we chose binary 
over a decimal system, where the point (at least 
on this particular aspect) is that we saw the sense 
in which working with binary would be a useful 
thing to do in this domain in just the same way 
that the designers of contemporary AI systems 
do, even those described as ‘autonomously intel-
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ligent’. How the machines work is not a surprise, 
in other words, but the outcome of a process of 
practically stipulating parameters in pursuit of a 
working model. Most importantly, as in Turing’s 
work but as is also the case in programming work 
more generally, all the choices and decisions we 
made assumed and traded upon an open-textured 
background of shared practices and understand-
ings against which an activity of this sort acquired 
whatever cultural intelligibility it may be taken to 
have. This is a lesson learned that may lead us to 
take a more cautious approach to claims made on 
behalf of new AI technologies which (some have 
claimed, as outlined above) comprise AI’s much 
heralded ‘autonomous systems’ that ‘do things for 
themselves’. Take AlphaGo; one of the headlines 
grabbing AI systems of the past five years. Our 
re-enactment of Turing’s methods furnishes 
insights into how we might approach such tech-
nologies. How so? We return to Jaton : 

 
I shall … temporally define computer 
programming as the situated activity of inscribing 
numbered lists of instructions that can be 
executed by computer processors to organize the 
movement of bits and to modify given data in 
desired ways … If I place emphasis on the practical 
and situated aspect of computer programming in 
my operational definition, it is because important 
historical events have progressively set it aside … 
[Once] computer systems started to be presented 
as input-output instruments controlled by a central 
unit – following the successful dissemination of 
the so-called von Neumann architecture – the 
entangled sociotechnical relationships required 
to make these objects operate in meaningful 
ways had begun to be placed in the background. 
If electronic computing systems were, in practice, 
intricate and highly problematic sociotechnical 
processes, von Neumann’s modelization made 
them appear as functional devices transforming 
inputs into outputs. The noninclusion of practices 
– hence their invisibilization – in the accounts of 
electronic computers … led to serious issues. 
(Jaton, 2020: 93) 
 

While von Neumann’s formalisation of the com-
puter was a significant achievement, in other 
words, it involved a specific kind of disappearing 
act; that is, it problematically disappeared the 
practical work of “making a universal machine” 

(Jaton, 2020: 103) as well as the people who made 
critical contributions to that work, engineers and 
computers, many of whom were not, contra to the 
received histories, white and male as Jaton points 
out. But if von Neumann effected a disappear-
ing act of this kind, we believe it depended on a 
prior one initiated by Turing who in his 1936 paper 
succeeded in disappearing himself. As we have 
shown above, a non-praxeological reading of Tur-
ing is liable to direct us away from the point that 
even before hardware is built and ways to oper-
ate that hardware to perform meaningful tasks are 
designed, the work of computation (e.g., mathe-
matics) has to be done; it will not do itself. Hence, 
we must be alive to the contemporary versions of 
Turing’s self-disappearing act if we are to prop-
erly get the measure of computation, especially 
for “the new AI” (Fuchs and Reichert, 2018) where 
the accompanying sales pitches and commentary 
often obfuscate rather than illuminate just how 
these systems work and have come into being (cf. 
Holton and Boyd, 2021).  

  Even those with an otherwise deep under-
standing of the issues can still fall foul of these 
problems when it comes to assessing these 
technologies. In a reflection on AlphaGo Zero, a 
much more powerful successor to the AlphaGo 
algorithm (created by Google DeepMind) which 
beat the human world Go champion, Lee Sedol, 
in 2016, Fazi (2021) makes allusions to a machine 
operating purely autonomously from human 
involvement:  

  
While much of computer programming has 
historically consisted in making human abstraction 
significant and operative within the instrumental 
remit of algorithmic machines, with deep learning 
we face the opposite case: the abstractions and 
consequent instructions the machine gives 
itself now require interpretation for them to be 
significant and operative for humans. The modes 
of organisation, categorisation and classification 
that belong to the abstractive operations of 
these computational cognitive agents are indeed 
incommensurable. Maintaining a theoretical focus 
on the nature and possibilities of abstraction 
as the balance moves between autonomy and 
automation within AI thus involves acknowledging 
and working with the prospect of modes of 
abstracting that might arise within calculation 
but also surpass the boundaries of human 
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cognitive representation … [The] ‘autonomy of 
automation’ … regarding abstractive operations 
is demonstrated by a deep learning system 
producing internal representations independently 
from the phenomenological or experiential ground 
of the human programmer … [In the] example of 
AlphaGo Zero, such an autonomy is doubled: not 
only the outputs but also the training inputs are 
somewhat independent from human knowledge. 
(Fazi, 2021: 15) 

 
We take very seriously Fazi’s point that we need 
to avoid conflating the operations of new AIs 
with our practices, an incommensurability argu-
ment which parallels that of Shanker’s, and share 
her scepticism with respect to totalising sys-
tems. However, Fazi has also here succumbed to 
Google DeepMind’s successful disappearing act 
in hinting at ‘independence’. For what is entirely 
missing here is any account of how the research-
ers involved got from AlphaGo to the successor 
algorithm and the work that went into it as an 
“engineered design”—where to illuminate this 
and recover the ways in which AIs are woven both 
out of and into practices, an approach of the kind 
we have outlined above is required. While Turing’s 
machines are certainly unwieldy when judged 
by contemporary standards—for instance, our 
‘three-divisibility’ algorithm could be optimised 
further rather than sequentially proceed through 
numbers one by one ad infinitum—it is worth not-
ing that with enough time, patience and “ingenu-
ity”, to return to Davis, we could simulate AlphaGo 
Zero using Turing’s components. The resulting 
TM programme would be extremely complicated, 
however, extending far beyond the instruction 
table sketched above. That alone should alert us 
to the dangers of any claim that automation has 
been ‘automated’ or that an AI has achieved ‘inde-
pendence’ in this domain: AIs cannot produce 
themselves, any more than any computational 
system can, and we lose sight of that point—
and by corollary, the practices and material set 
ups that do such important enabling work in the 
realm of these machines—at our conceptual and 
methodological peril. 

Conclusion: grappling with 
Turing’s ‘disappearing act’ 
As the burgeoning literature attests, the social 
sciences and humanities, like much of the rest of 
the world, are in the process of getting to grips 
with the disparate technologies which comprise 
the contemporary field of artificial intelligence 
(AI) and which underpin its rapid and often highly 
problematic advances over the last decade and 
more. Real strides have undoubtedly been made 
along that path—as interested publics, we all 
understand a great deal more than we did even a 
few years ago—but, we would contend, erasures 
and misunderstandings persist. Here in particular, 
and precisely because they have been designed 
that way, it is all too easy to accept claims regard-
ing the agentic status of the new AI’s signature 
systems without looking any further. In that con-
text and building on important work already con-
ducted on that front, we have tried to open up the 
praxeological foundations of machine computa-
tion as a corrective to lingering reifications of the 
‘thinking machine’ (Garfinkel, 2002). Reading Tur-
ing alternately, to draw on Garfinkel a final time, 
we have argued that the construction of such 
machines as a formal accomplishment constitutes 
a paired phenomenon connecting the execu-
tion of a function with the writing of instructions 
which enable that function to be so executed 
while working within a particular computational 
architecture. On this basis, we have argued that 
the work of instruction represents an irreducible 
praxeological supplement to the construction 
of ‘the autonomous machine’ and while they are 
asymmetrically related, they are mutually depend-
ent and mutually informative.  Jones-Imhotep 
(2020) has recently argued that machine auton-
omy is a carefully crafted performance on a stage 
set for an audience with specifically cultivated 
sensibilities who are primed to see the machine 
in quite particular ways, i.e., as operating without 
external intervention. If Jones-Imhotep is right, 
we need to understand what goes into stabilising 
such performances in the field of contemporary 
AI, including the various disappearing acts per-
formed along the way, if we are to arrive at a more 
consistently deflationary rather than inflationary 
view of contemporary AI’s actual achievements. It 
is only by proceeding in that way that we will be in 
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a viable position to show in any particular case, as 
we hope to have done via our re-enactment, what 
computers can do and how we help them to do it
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